Extensions 1→N→G→Q→1 with N=C3xA4 and Q=Dic3

Direct product G=NxQ with N=C3xA4 and Q=Dic3
dρLabelID
C3xDic3xA4366C3xDic3xA4432,624

Semidirect products G=N:Q with N=C3xA4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3xA4):1Dic3 = C62:6Dic3φ: Dic3/C2S3 ⊆ Out C3xA4363(C3xA4):1Dic3432,260
(C3xA4):2Dic3 = C62:4C12φ: Dic3/C2S3 ⊆ Out C3xA4366-(C3xA4):2Dic3432,272
(C3xA4):3Dic3 = C3xC6.7S4φ: Dic3/C6C2 ⊆ Out C3xA4366(C3xA4):3Dic3432,618
(C3xA4):4Dic3 = C62:10Dic3φ: Dic3/C6C2 ⊆ Out C3xA4108(C3xA4):4Dic3432,621
(C3xA4):5Dic3 = A4xC3:Dic3φ: Dic3/C6C2 ⊆ Out C3xA4108(C3xA4):5Dic3432,627

Non-split extensions G=N.Q with N=C3xA4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3xA4).Dic3 = Dic9:A4φ: Dic3/C2S3 ⊆ Out C3xA41086-(C3xA4).Dic3432,265
(C3xA4).2Dic3 = A4:Dic9φ: Dic3/C6C2 ⊆ Out C3xA41086-(C3xA4).2Dic3432,254
(C3xA4).3Dic3 = A4xDic9φ: Dic3/C6C2 ⊆ Out C3xA41086-(C3xA4).3Dic3432,266

׿
x
:
Z
F
o
wr
Q
<