Extensions 1→N→G→Q→1 with N=C3×A4 and Q=Dic3

Direct product G=N×Q with N=C3×A4 and Q=Dic3

Semidirect products G=N:Q with N=C3×A4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3×A4)⋊1Dic3 = C626Dic3φ: Dic3/C2S3 ⊆ Out C3×A4363(C3xA4):1Dic3432,260
(C3×A4)⋊2Dic3 = C624C12φ: Dic3/C2S3 ⊆ Out C3×A4366-(C3xA4):2Dic3432,272
(C3×A4)⋊3Dic3 = C3×C6.7S4φ: Dic3/C6C2 ⊆ Out C3×A4366(C3xA4):3Dic3432,618
(C3×A4)⋊4Dic3 = C6210Dic3φ: Dic3/C6C2 ⊆ Out C3×A4108(C3xA4):4Dic3432,621
(C3×A4)⋊5Dic3 = A4×C3⋊Dic3φ: Dic3/C6C2 ⊆ Out C3×A4108(C3xA4):5Dic3432,627

Non-split extensions G=N.Q with N=C3×A4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3×A4).Dic3 = Dic9⋊A4φ: Dic3/C2S3 ⊆ Out C3×A41086-(C3xA4).Dic3432,265
(C3×A4).2Dic3 = A4⋊Dic9φ: Dic3/C6C2 ⊆ Out C3×A41086-(C3xA4).2Dic3432,254
(C3×A4).3Dic3 = A4×Dic9φ: Dic3/C6C2 ⊆ Out C3×A41086-(C3xA4).3Dic3432,266