Copied to
clipboard

G = Dic9⋊A4order 432 = 24·33

The semidirect product of Dic9 and A4 acting via A4/C22=C3

metabelian, soluble, monomial

Aliases: Dic9⋊A4, C9⋊A4⋊C4, C9⋊(C4×A4), C6.5(S3×A4), (C2×C18)⋊1C12, (C6×A4).2S3, C18.3(C2×A4), (C3×A4).Dic3, C2.1(D9⋊A4), C3.1(Dic3×A4), C222(C9⋊C12), C23.2(C9⋊C6), (C22×C18).3C6, (C22×Dic9)⋊2C3, (C2×C9⋊A4).C2, (C2×C6).5(C3×Dic3), (C22×C6).11(C3×S3), SmallGroup(432,265)

Series: Derived Chief Lower central Upper central

C1C2×C18 — Dic9⋊A4
C1C3C9C2×C18C22×C18C2×C9⋊A4 — Dic9⋊A4
C2×C18 — Dic9⋊A4
C1C2

Generators and relations for Dic9⋊A4
 G = < a,b,c,d,e | a18=c2=d2=e3=1, b2=a9, bab-1=a-1, ac=ca, ad=da, eae-1=a13, bc=cb, bd=db, be=eb, ece-1=cd=dc, ede-1=c >

Subgroups: 326 in 61 conjugacy classes, 19 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C6, C6, C2×C4, C23, C9, C9, C32, Dic3, C12, A4, C2×C6, C2×C6, C22×C4, C18, C18, C3×C6, C2×Dic3, C2×A4, C22×C6, 3- 1+2, Dic9, Dic9, C3.A4, C2×C18, C2×C18, C3×Dic3, C3×A4, C4×A4, C22×Dic3, C2×3- 1+2, C2×Dic9, C2×C3.A4, C22×C18, C6×A4, C9⋊C12, C9⋊A4, C22×Dic9, Dic3×A4, C2×C9⋊A4, Dic9⋊A4
Quotients: C1, C2, C3, C4, S3, C6, Dic3, C12, A4, C3×S3, C2×A4, C3×Dic3, C4×A4, C9⋊C6, S3×A4, C9⋊C12, Dic3×A4, D9⋊A4, Dic9⋊A4

Smallest permutation representation of Dic9⋊A4
On 108 points
Generators in S108
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 69 10 60)(2 68 11 59)(3 67 12 58)(4 66 13 57)(5 65 14 56)(6 64 15 55)(7 63 16 72)(8 62 17 71)(9 61 18 70)(19 73 28 82)(20 90 29 81)(21 89 30 80)(22 88 31 79)(23 87 32 78)(24 86 33 77)(25 85 34 76)(26 84 35 75)(27 83 36 74)(37 96 46 105)(38 95 47 104)(39 94 48 103)(40 93 49 102)(41 92 50 101)(42 91 51 100)(43 108 52 99)(44 107 53 98)(45 106 54 97)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(61 70)(62 71)(63 72)(91 100)(92 101)(93 102)(94 103)(95 104)(96 105)(97 106)(98 107)(99 108)
(19 28)(20 29)(21 30)(22 31)(23 32)(24 33)(25 34)(26 35)(27 36)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(73 82)(74 83)(75 84)(76 85)(77 86)(78 87)(79 88)(80 89)(81 90)(91 100)(92 101)(93 102)(94 103)(95 104)(96 105)(97 106)(98 107)(99 108)
(1 51 34)(2 40 29)(3 47 24)(4 54 19)(5 43 32)(6 50 27)(7 39 22)(8 46 35)(9 53 30)(10 42 25)(11 49 20)(12 38 33)(13 45 28)(14 52 23)(15 41 36)(16 48 31)(17 37 26)(18 44 21)(55 92 74)(56 99 87)(57 106 82)(58 95 77)(59 102 90)(60 91 85)(61 98 80)(62 105 75)(63 94 88)(64 101 83)(65 108 78)(66 97 73)(67 104 86)(68 93 81)(69 100 76)(70 107 89)(71 96 84)(72 103 79)

G:=sub<Sym(108)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,69,10,60)(2,68,11,59)(3,67,12,58)(4,66,13,57)(5,65,14,56)(6,64,15,55)(7,63,16,72)(8,62,17,71)(9,61,18,70)(19,73,28,82)(20,90,29,81)(21,89,30,80)(22,88,31,79)(23,87,32,78)(24,86,33,77)(25,85,34,76)(26,84,35,75)(27,83,36,74)(37,96,46,105)(38,95,47,104)(39,94,48,103)(40,93,49,102)(41,92,50,101)(42,91,51,100)(43,108,52,99)(44,107,53,98)(45,106,54,97), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107)(99,108), (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107)(99,108), (1,51,34)(2,40,29)(3,47,24)(4,54,19)(5,43,32)(6,50,27)(7,39,22)(8,46,35)(9,53,30)(10,42,25)(11,49,20)(12,38,33)(13,45,28)(14,52,23)(15,41,36)(16,48,31)(17,37,26)(18,44,21)(55,92,74)(56,99,87)(57,106,82)(58,95,77)(59,102,90)(60,91,85)(61,98,80)(62,105,75)(63,94,88)(64,101,83)(65,108,78)(66,97,73)(67,104,86)(68,93,81)(69,100,76)(70,107,89)(71,96,84)(72,103,79)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,69,10,60)(2,68,11,59)(3,67,12,58)(4,66,13,57)(5,65,14,56)(6,64,15,55)(7,63,16,72)(8,62,17,71)(9,61,18,70)(19,73,28,82)(20,90,29,81)(21,89,30,80)(22,88,31,79)(23,87,32,78)(24,86,33,77)(25,85,34,76)(26,84,35,75)(27,83,36,74)(37,96,46,105)(38,95,47,104)(39,94,48,103)(40,93,49,102)(41,92,50,101)(42,91,51,100)(43,108,52,99)(44,107,53,98)(45,106,54,97), (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(61,70)(62,71)(63,72)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107)(99,108), (19,28)(20,29)(21,30)(22,31)(23,32)(24,33)(25,34)(26,35)(27,36)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(91,100)(92,101)(93,102)(94,103)(95,104)(96,105)(97,106)(98,107)(99,108), (1,51,34)(2,40,29)(3,47,24)(4,54,19)(5,43,32)(6,50,27)(7,39,22)(8,46,35)(9,53,30)(10,42,25)(11,49,20)(12,38,33)(13,45,28)(14,52,23)(15,41,36)(16,48,31)(17,37,26)(18,44,21)(55,92,74)(56,99,87)(57,106,82)(58,95,77)(59,102,90)(60,91,85)(61,98,80)(62,105,75)(63,94,88)(64,101,83)(65,108,78)(66,97,73)(67,104,86)(68,93,81)(69,100,76)(70,107,89)(71,96,84)(72,103,79) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,69,10,60),(2,68,11,59),(3,67,12,58),(4,66,13,57),(5,65,14,56),(6,64,15,55),(7,63,16,72),(8,62,17,71),(9,61,18,70),(19,73,28,82),(20,90,29,81),(21,89,30,80),(22,88,31,79),(23,87,32,78),(24,86,33,77),(25,85,34,76),(26,84,35,75),(27,83,36,74),(37,96,46,105),(38,95,47,104),(39,94,48,103),(40,93,49,102),(41,92,50,101),(42,91,51,100),(43,108,52,99),(44,107,53,98),(45,106,54,97)], [(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(61,70),(62,71),(63,72),(91,100),(92,101),(93,102),(94,103),(95,104),(96,105),(97,106),(98,107),(99,108)], [(19,28),(20,29),(21,30),(22,31),(23,32),(24,33),(25,34),(26,35),(27,36),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(73,82),(74,83),(75,84),(76,85),(77,86),(78,87),(79,88),(80,89),(81,90),(91,100),(92,101),(93,102),(94,103),(95,104),(96,105),(97,106),(98,107),(99,108)], [(1,51,34),(2,40,29),(3,47,24),(4,54,19),(5,43,32),(6,50,27),(7,39,22),(8,46,35),(9,53,30),(10,42,25),(11,49,20),(12,38,33),(13,45,28),(14,52,23),(15,41,36),(16,48,31),(17,37,26),(18,44,21),(55,92,74),(56,99,87),(57,106,82),(58,95,77),(59,102,90),(60,91,85),(61,98,80),(62,105,75),(63,94,88),(64,101,83),(65,108,78),(66,97,73),(67,104,86),(68,93,81),(69,100,76),(70,107,89),(71,96,84),(72,103,79)]])

32 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D6A6B6C6D6E9A9B9C12A12B12C12D18A···18G18H18I
order12223334444666669991212121218···181818
size113321212992727266121262424363636366···62424

32 irreducible representations

dim1111112222333666666
type+++-++++--+-
imageC1C2C3C4C6C12S3Dic3C3×S3C3×Dic3A4C2×A4C4×A4C9⋊C6S3×A4C9⋊C12Dic3×A4D9⋊A4Dic9⋊A4
kernelDic9⋊A4C2×C9⋊A4C22×Dic9C9⋊A4C22×C18C2×C18C6×A4C3×A4C22×C6C2×C6Dic9C18C9C23C6C22C3C2C1
# reps1122241122112111133

Matrix representation of Dic9⋊A4 in GL6(𝔽37)

31260000
11200000
01113100
141561700
29200617
270002026
,
3690000
810000
2709100
616292800
1100091
2312002928
,
3600000
0360000
18181000
18180100
0000360
0000036
,
100000
010000
191936000
191903600
5500360
5500036
,
0036100
1010353600
0027010
0027001
0011000
1011000

G:=sub<GL(6,GF(37))| [31,11,0,14,29,27,26,20,1,15,2,0,0,0,11,6,0,0,0,0,31,17,0,0,0,0,0,0,6,20,0,0,0,0,17,26],[36,8,27,6,11,23,9,1,0,16,0,12,0,0,9,29,0,0,0,0,1,28,0,0,0,0,0,0,9,29,0,0,0,0,1,28],[36,0,18,18,0,0,0,36,18,18,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[1,0,19,19,5,5,0,1,19,19,5,5,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36],[0,10,0,0,0,1,0,10,0,0,0,0,36,35,27,27,11,11,1,36,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

Dic9⋊A4 in GAP, Magma, Sage, TeX

{\rm Dic}_9\rtimes A_4
% in TeX

G:=Group("Dic9:A4");
// GroupNames label

G:=SmallGroup(432,265);
// by ID

G=gap.SmallGroup(432,265);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,2,-3,-3,42,514,221,10085,4044,292,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^18=c^2=d^2=e^3=1,b^2=a^9,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^13,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

׿
×
𝔽