Copied to
clipboard

G = A4×C3⋊Dic3order 432 = 24·33

Direct product of A4 and C3⋊Dic3

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C3⋊Dic3, C627C12, C3⋊(Dic3×A4), C6.15(S3×A4), C325(C4×A4), (C6×A4).11S3, (C32×A4)⋊7C4, (C3×A4)⋊5Dic3, (C2×C62).10C6, C2.1(A4×C3⋊S3), (A4×C3×C6).5C2, (C3×C6).20(C2×A4), (C2×C6)⋊3(C3×Dic3), C23.2(C3×C3⋊S3), (C2×A4).2(C3⋊S3), C222(C3×C3⋊Dic3), (C22×C6).17(C3×S3), (C22×C3⋊Dic3)⋊3C3, SmallGroup(432,627)

Series: Derived Chief Lower central Upper central

C1C62 — A4×C3⋊Dic3
C1C3C32C62C2×C62A4×C3×C6 — A4×C3⋊Dic3
C62 — A4×C3⋊Dic3
C1C2

Generators and relations for A4×C3⋊Dic3
 G = < a,b,c,d,e,f | a2=b2=c3=d3=e6=1, f2=e3, cac-1=ab=ba, ad=da, ae=ea, af=fa, cbc-1=a, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=d-1, fef-1=e-1 >

Subgroups: 668 in 146 conjugacy classes, 39 normal (15 characteristic)
C1, C2, C2 [×2], C3 [×4], C3 [×5], C4 [×2], C22, C22 [×2], C6 [×4], C6 [×13], C2×C4 [×2], C23, C32, C32 [×8], Dic3 [×8], C12, A4, A4 [×4], C2×C6 [×4], C2×C6 [×8], C22×C4, C3×C6, C3×C6 [×10], C2×Dic3 [×8], C2×A4, C2×A4 [×4], C22×C6 [×4], C33, C3×Dic3 [×4], C3⋊Dic3, C3⋊Dic3, C3×A4 [×4], C3×A4 [×4], C62, C62 [×2], C4×A4, C22×Dic3 [×4], C32×C6, C2×C3⋊Dic3 [×2], C6×A4 [×4], C6×A4 [×4], C2×C62, C3×C3⋊Dic3, C32×A4, Dic3×A4 [×4], C22×C3⋊Dic3, A4×C3×C6, A4×C3⋊Dic3
Quotients: C1, C2, C3, C4, S3 [×4], C6, Dic3 [×4], C12, A4, C3×S3 [×4], C3⋊S3, C2×A4, C3×Dic3 [×4], C3⋊Dic3, C4×A4, C3×C3⋊S3, S3×A4 [×4], C3×C3⋊Dic3, Dic3×A4 [×4], A4×C3⋊S3, A4×C3⋊Dic3

Smallest permutation representation of A4×C3⋊Dic3
On 108 points
Generators in S108
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(49 52)(50 53)(51 54)(55 58)(56 59)(57 60)(61 64)(62 65)(63 66)(67 70)(68 71)(69 72)(73 76)(74 77)(75 78)(79 82)(80 83)(81 84)(103 106)(104 107)(105 108)
(7 10)(8 11)(9 12)(13 16)(14 17)(15 18)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)(43 46)(44 47)(45 48)(49 52)(50 53)(51 54)(55 58)(56 59)(57 60)(61 64)(62 65)(63 66)(85 88)(86 89)(87 90)(91 94)(92 95)(93 96)(97 100)(98 101)(99 102)(103 106)(104 107)(105 108)
(1 62 44)(2 63 45)(3 64 46)(4 65 47)(5 66 48)(6 61 43)(7 102 84)(8 97 79)(9 98 80)(10 99 81)(11 100 82)(12 101 83)(13 96 78)(14 91 73)(15 92 74)(16 93 75)(17 94 76)(18 95 77)(19 58 37)(20 59 38)(21 60 39)(22 55 40)(23 56 41)(24 57 42)(25 53 35)(26 54 36)(27 49 31)(28 50 32)(29 51 33)(30 52 34)(67 103 85)(68 104 86)(69 105 87)(70 106 88)(71 107 89)(72 108 90)
(1 23 29)(2 24 30)(3 19 25)(4 20 26)(5 21 27)(6 22 28)(7 13 107)(8 14 108)(9 15 103)(10 16 104)(11 17 105)(12 18 106)(31 48 39)(32 43 40)(33 44 41)(34 45 42)(35 46 37)(36 47 38)(49 66 60)(50 61 55)(51 62 56)(52 63 57)(53 64 58)(54 65 59)(67 80 74)(68 81 75)(69 82 76)(70 83 77)(71 84 78)(72 79 73)(85 98 92)(86 99 93)(87 100 94)(88 101 95)(89 102 96)(90 97 91)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)
(1 72 4 69)(2 71 5 68)(3 70 6 67)(7 49 10 52)(8 54 11 51)(9 53 12 50)(13 60 16 57)(14 59 17 56)(15 58 18 55)(19 77 22 74)(20 76 23 73)(21 75 24 78)(25 83 28 80)(26 82 29 79)(27 81 30 84)(31 99 34 102)(32 98 35 101)(33 97 36 100)(37 95 40 92)(38 94 41 91)(39 93 42 96)(43 85 46 88)(44 90 47 87)(45 89 48 86)(61 103 64 106)(62 108 65 105)(63 107 66 104)

G:=sub<Sym(108)| (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(49,52)(50,53)(51,54)(55,58)(56,59)(57,60)(61,64)(62,65)(63,66)(67,70)(68,71)(69,72)(73,76)(74,77)(75,78)(79,82)(80,83)(81,84)(103,106)(104,107)(105,108), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(49,52)(50,53)(51,54)(55,58)(56,59)(57,60)(61,64)(62,65)(63,66)(85,88)(86,89)(87,90)(91,94)(92,95)(93,96)(97,100)(98,101)(99,102)(103,106)(104,107)(105,108), (1,62,44)(2,63,45)(3,64,46)(4,65,47)(5,66,48)(6,61,43)(7,102,84)(8,97,79)(9,98,80)(10,99,81)(11,100,82)(12,101,83)(13,96,78)(14,91,73)(15,92,74)(16,93,75)(17,94,76)(18,95,77)(19,58,37)(20,59,38)(21,60,39)(22,55,40)(23,56,41)(24,57,42)(25,53,35)(26,54,36)(27,49,31)(28,50,32)(29,51,33)(30,52,34)(67,103,85)(68,104,86)(69,105,87)(70,106,88)(71,107,89)(72,108,90), (1,23,29)(2,24,30)(3,19,25)(4,20,26)(5,21,27)(6,22,28)(7,13,107)(8,14,108)(9,15,103)(10,16,104)(11,17,105)(12,18,106)(31,48,39)(32,43,40)(33,44,41)(34,45,42)(35,46,37)(36,47,38)(49,66,60)(50,61,55)(51,62,56)(52,63,57)(53,64,58)(54,65,59)(67,80,74)(68,81,75)(69,82,76)(70,83,77)(71,84,78)(72,79,73)(85,98,92)(86,99,93)(87,100,94)(88,101,95)(89,102,96)(90,97,91), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,72,4,69)(2,71,5,68)(3,70,6,67)(7,49,10,52)(8,54,11,51)(9,53,12,50)(13,60,16,57)(14,59,17,56)(15,58,18,55)(19,77,22,74)(20,76,23,73)(21,75,24,78)(25,83,28,80)(26,82,29,79)(27,81,30,84)(31,99,34,102)(32,98,35,101)(33,97,36,100)(37,95,40,92)(38,94,41,91)(39,93,42,96)(43,85,46,88)(44,90,47,87)(45,89,48,86)(61,103,64,106)(62,108,65,105)(63,107,66,104)>;

G:=Group( (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(49,52)(50,53)(51,54)(55,58)(56,59)(57,60)(61,64)(62,65)(63,66)(67,70)(68,71)(69,72)(73,76)(74,77)(75,78)(79,82)(80,83)(81,84)(103,106)(104,107)(105,108), (7,10)(8,11)(9,12)(13,16)(14,17)(15,18)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48)(49,52)(50,53)(51,54)(55,58)(56,59)(57,60)(61,64)(62,65)(63,66)(85,88)(86,89)(87,90)(91,94)(92,95)(93,96)(97,100)(98,101)(99,102)(103,106)(104,107)(105,108), (1,62,44)(2,63,45)(3,64,46)(4,65,47)(5,66,48)(6,61,43)(7,102,84)(8,97,79)(9,98,80)(10,99,81)(11,100,82)(12,101,83)(13,96,78)(14,91,73)(15,92,74)(16,93,75)(17,94,76)(18,95,77)(19,58,37)(20,59,38)(21,60,39)(22,55,40)(23,56,41)(24,57,42)(25,53,35)(26,54,36)(27,49,31)(28,50,32)(29,51,33)(30,52,34)(67,103,85)(68,104,86)(69,105,87)(70,106,88)(71,107,89)(72,108,90), (1,23,29)(2,24,30)(3,19,25)(4,20,26)(5,21,27)(6,22,28)(7,13,107)(8,14,108)(9,15,103)(10,16,104)(11,17,105)(12,18,106)(31,48,39)(32,43,40)(33,44,41)(34,45,42)(35,46,37)(36,47,38)(49,66,60)(50,61,55)(51,62,56)(52,63,57)(53,64,58)(54,65,59)(67,80,74)(68,81,75)(69,82,76)(70,83,77)(71,84,78)(72,79,73)(85,98,92)(86,99,93)(87,100,94)(88,101,95)(89,102,96)(90,97,91), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108), (1,72,4,69)(2,71,5,68)(3,70,6,67)(7,49,10,52)(8,54,11,51)(9,53,12,50)(13,60,16,57)(14,59,17,56)(15,58,18,55)(19,77,22,74)(20,76,23,73)(21,75,24,78)(25,83,28,80)(26,82,29,79)(27,81,30,84)(31,99,34,102)(32,98,35,101)(33,97,36,100)(37,95,40,92)(38,94,41,91)(39,93,42,96)(43,85,46,88)(44,90,47,87)(45,89,48,86)(61,103,64,106)(62,108,65,105)(63,107,66,104) );

G=PermutationGroup([(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(49,52),(50,53),(51,54),(55,58),(56,59),(57,60),(61,64),(62,65),(63,66),(67,70),(68,71),(69,72),(73,76),(74,77),(75,78),(79,82),(80,83),(81,84),(103,106),(104,107),(105,108)], [(7,10),(8,11),(9,12),(13,16),(14,17),(15,18),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42),(43,46),(44,47),(45,48),(49,52),(50,53),(51,54),(55,58),(56,59),(57,60),(61,64),(62,65),(63,66),(85,88),(86,89),(87,90),(91,94),(92,95),(93,96),(97,100),(98,101),(99,102),(103,106),(104,107),(105,108)], [(1,62,44),(2,63,45),(3,64,46),(4,65,47),(5,66,48),(6,61,43),(7,102,84),(8,97,79),(9,98,80),(10,99,81),(11,100,82),(12,101,83),(13,96,78),(14,91,73),(15,92,74),(16,93,75),(17,94,76),(18,95,77),(19,58,37),(20,59,38),(21,60,39),(22,55,40),(23,56,41),(24,57,42),(25,53,35),(26,54,36),(27,49,31),(28,50,32),(29,51,33),(30,52,34),(67,103,85),(68,104,86),(69,105,87),(70,106,88),(71,107,89),(72,108,90)], [(1,23,29),(2,24,30),(3,19,25),(4,20,26),(5,21,27),(6,22,28),(7,13,107),(8,14,108),(9,15,103),(10,16,104),(11,17,105),(12,18,106),(31,48,39),(32,43,40),(33,44,41),(34,45,42),(35,46,37),(36,47,38),(49,66,60),(50,61,55),(51,62,56),(52,63,57),(53,64,58),(54,65,59),(67,80,74),(68,81,75),(69,82,76),(70,83,77),(71,84,78),(72,79,73),(85,98,92),(86,99,93),(87,100,94),(88,101,95),(89,102,96),(90,97,91)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108)], [(1,72,4,69),(2,71,5,68),(3,70,6,67),(7,49,10,52),(8,54,11,51),(9,53,12,50),(13,60,16,57),(14,59,17,56),(15,58,18,55),(19,77,22,74),(20,76,23,73),(21,75,24,78),(25,83,28,80),(26,82,29,79),(27,81,30,84),(31,99,34,102),(32,98,35,101),(33,97,36,100),(37,95,40,92),(38,94,41,91),(39,93,42,96),(43,85,46,88),(44,90,47,87),(45,89,48,86),(61,103,64,106),(62,108,65,105),(63,107,66,104)])

48 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F3G···3N4A4B4C4D6A6B6C6D6E6F6G···6N6O···6V12A12B12C12D
order12223333333···344446666666···66···612121212
size11332222448···89927272222446···68···836363636

48 irreducible representations

dim111111222233366
type+++-+++-
imageC1C2C3C4C6C12S3Dic3C3×S3C3×Dic3A4C2×A4C4×A4S3×A4Dic3×A4
kernelA4×C3⋊Dic3A4×C3×C6C22×C3⋊Dic3C32×A4C2×C62C62C6×A4C3×A4C22×C6C2×C6C3⋊Dic3C3×C6C32C6C3
# reps112224448811244

Matrix representation of A4×C3⋊Dic3 in GL7(𝔽13)

1000000
0100000
0010000
0001000
00001260
0000010
00000012
,
1000000
0100000
0010000
0001000
00001711
00000120
00000012
,
1000000
0100000
0010000
0001000
0000300
0000001
00003410
,
91100000
0300000
0090000
00113000
0000100
0000010
0000001
,
101100000
0400000
00120000
00012000
00001200
00000120
00000012
,
10400000
4300000
0091000
0094000
0000500
0000050
0000005

G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,6,1,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,7,12,0,0,0,0,0,11,0,12],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,3,0,0,0,0,0,0,4,0,0,0,0,0,1,10],[9,0,0,0,0,0,0,11,3,0,0,0,0,0,0,0,9,11,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[10,0,0,0,0,0,0,11,4,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12],[10,4,0,0,0,0,0,4,3,0,0,0,0,0,0,0,9,9,0,0,0,0,0,1,4,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,5] >;

A4×C3⋊Dic3 in GAP, Magma, Sage, TeX

A_4\times C_3\rtimes {\rm Dic}_3
% in TeX

G:=Group("A4xC3:Dic3");
// GroupNames label

G:=SmallGroup(432,627);
// by ID

G=gap.SmallGroup(432,627);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,2,-3,-3,42,514,221,4037,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^6=1,f^2=e^3,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d^-1,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽