Copied to
clipboard

G = C3×Dic3×A4order 432 = 24·33

Direct product of C3, Dic3 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C3×Dic3×A4, C626C12, C3⋊(C12×A4), C6.3(C6×A4), (C3×A4)⋊5C12, (C6×A4).9C6, C6.22(S3×A4), C324(C4×A4), (C6×A4).12S3, (C32×A4)⋊6C4, (C2×C62).9C6, C23.2(S3×C32), (C22×Dic3)⋊C32, C222(C32×Dic3), (C2×C6)⋊(C3×C12), C2.1(C3×S3×A4), (Dic3×C2×C6)⋊C3, (A4×C3×C6).4C2, (C22×C6).(C3×C6), (C2×A4).2(C3×S3), (C3×C6).17(C2×A4), (C2×C6)⋊4(C3×Dic3), (C22×C6).20(C3×S3), SmallGroup(432,624)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C3×Dic3×A4
C1C3C2×C6C22×C6C2×C62A4×C3×C6 — C3×Dic3×A4
C2×C6 — C3×Dic3×A4
C1C6

Generators and relations for C3×Dic3×A4
 G = < a,b,c,d,e,f | a3=b6=d2=e2=f3=1, c2=b3, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc-1=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 484 in 136 conjugacy classes, 40 normal (25 characteristic)
C1, C2, C2 [×2], C3 [×2], C3 [×7], C4 [×2], C22, C22 [×2], C6 [×2], C6 [×13], C2×C4 [×2], C23, C32, C32 [×8], Dic3, Dic3, C12 [×5], A4 [×3], A4 [×3], C2×C6 [×2], C2×C6 [×7], C22×C4, C3×C6, C3×C6 [×10], C2×Dic3 [×2], C2×C12 [×2], C2×A4 [×3], C2×A4 [×3], C22×C6 [×2], C22×C6, C33, C3×Dic3, C3×Dic3 [×4], C3×C12, C3×A4, C3×A4 [×3], C3×A4 [×4], C62, C62 [×2], C4×A4 [×3], C22×Dic3, C22×C12, C32×C6, C6×Dic3 [×2], C6×A4, C6×A4 [×3], C6×A4 [×4], C2×C62, C32×Dic3, C32×A4, Dic3×A4 [×3], C12×A4, Dic3×C2×C6, A4×C3×C6, C3×Dic3×A4
Quotients: C1, C2, C3 [×4], C4, S3, C6 [×4], C32, Dic3, C12 [×4], A4, C3×S3 [×4], C3×C6, C2×A4, C3×Dic3 [×4], C3×C12, C3×A4, C4×A4, S3×C32, S3×A4, C6×A4, C32×Dic3, Dic3×A4, C12×A4, C3×S3×A4, C3×Dic3×A4

Smallest permutation representation of C3×Dic3×A4
On 36 points
Generators in S36
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 15 17)(14 16 18)(19 23 21)(20 24 22)(25 29 27)(26 30 28)(31 35 33)(32 36 34)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 22 4 19)(2 21 5 24)(3 20 6 23)(7 26 10 29)(8 25 11 28)(9 30 12 27)(13 32 16 35)(14 31 17 34)(15 36 18 33)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(31 34)(32 35)(33 36)
(1 15 7)(2 16 8)(3 17 9)(4 18 10)(5 13 11)(6 14 12)(19 33 29)(20 34 30)(21 35 25)(22 36 26)(23 31 27)(24 32 28)

G:=sub<Sym(36)| (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(31,34)(32,35)(33,36), (1,15,7)(2,16,8)(3,17,9)(4,18,10)(5,13,11)(6,14,12)(19,33,29)(20,34,30)(21,35,25)(22,36,26)(23,31,27)(24,32,28)>;

G:=Group( (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,23,21)(20,24,22)(25,29,27)(26,30,28)(31,35,33)(32,36,34), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,22,4,19)(2,21,5,24)(3,20,6,23)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,32,16,35)(14,31,17,34)(15,36,18,33), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(31,34)(32,35)(33,36), (1,15,7)(2,16,8)(3,17,9)(4,18,10)(5,13,11)(6,14,12)(19,33,29)(20,34,30)(21,35,25)(22,36,26)(23,31,27)(24,32,28) );

G=PermutationGroup([(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,15,17),(14,16,18),(19,23,21),(20,24,22),(25,29,27),(26,30,28),(31,35,33),(32,36,34)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,22,4,19),(2,21,5,24),(3,20,6,23),(7,26,10,29),(8,25,11,28),(9,30,12,27),(13,32,16,35),(14,31,17,34),(15,36,18,33)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(31,34),(32,35),(33,36)], [(1,15,7),(2,16,8),(3,17,9),(4,18,10),(5,13,11),(6,14,12),(19,33,29),(20,34,30),(21,35,25),(22,36,26),(23,31,27),(24,32,28)])

72 conjugacy classes

class 1 2A2B2C3A3B3C3D3E3F···3K3L···3Q4A4B4C4D6A6B6C6D6E6F6G6H6I6J···6O6P···6U6V···6AA12A12B12C12D12E12F12G12H12I···12T
order1222333333···33···344446666666666···66···66···6121212121212121212···12
size1133112224···48···833991122233334···46···68···83333999912···12

72 irreducible representations

dim1111111112222223333336666
type+++-+++-
imageC1C2C3C3C4C6C6C12C12S3Dic3C3×S3C3×S3C3×Dic3C3×Dic3A4C2×A4C3×A4C4×A4C6×A4C12×A4S3×A4Dic3×A4C3×S3×A4C3×Dic3×A4
kernelC3×Dic3×A4A4×C3×C6Dic3×A4Dic3×C2×C6C32×A4C6×A4C2×C62C3×A4C62C6×A4C3×A4C2×A4C22×C6A4C2×C6C3×Dic3C3×C6Dic3C32C6C3C6C3C2C1
# reps11622621241162621122241122

Matrix representation of C3×Dic3×A4 in GL5(𝔽13)

90000
09000
00900
00090
00009
,
100000
34000
00100
00010
00001
,
53000
08000
001200
000120
000012
,
10000
01000
00100
000120
000012
,
10000
01000
001200
00010
000012
,
10000
01000
00009
00400
00040

G:=sub<GL(5,GF(13))| [9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0,0,9],[10,3,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[5,0,0,0,0,3,8,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,4,0,0,9,0,0] >;

C3×Dic3×A4 in GAP, Magma, Sage, TeX

C_3\times {\rm Dic}_3\times A_4
% in TeX

G:=Group("C3xDic3xA4");
// GroupNames label

G:=SmallGroup(432,624);
// by ID

G=gap.SmallGroup(432,624);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,-2,2,-3,126,1901,768,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^6=d^2=e^2=f^3=1,c^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽