Extensions 1→N→G→Q→1 with N=C2xC3:S3 and Q=Dic3

Direct product G=NxQ with N=C2xC3:S3 and Q=Dic3
dρLabelID
C2xDic3xC3:S3144C2xDic3xC3:S3432,677

Semidirect products G=N:Q with N=C2xC3:S3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C2xC3:S3):1Dic3 = C62.4D6φ: Dic3/C2S3 ⊆ Out C2xC3:S372(C2xC3:S3):1Dic3432,97
(C2xC3:S3):2Dic3 = C2xC6.S32φ: Dic3/C2S3 ⊆ Out C2xC3:S372(C2xC3:S3):2Dic3432,317
(C2xC3:S3):3Dic3 = C62.78D6φ: Dic3/C6C2 ⊆ Out C2xC3:S3144(C2xC3:S3):3Dic3432,450
(C2xC3:S3):4Dic3 = C62.84D6φ: Dic3/C6C2 ⊆ Out C2xC3:S348(C2xC3:S3):4Dic3432,461
(C2xC3:S3):5Dic3 = C62:11Dic3φ: Dic3/C6C2 ⊆ Out C2xC3:S3244(C2xC3:S3):5Dic3432,641
(C2xC3:S3):6Dic3 = C2xC33:9(C2xC4)φ: Dic3/C6C2 ⊆ Out C2xC3:S348(C2xC3:S3):6Dic3432,692
(C2xC3:S3):7Dic3 = C22xC33:C4φ: Dic3/C6C2 ⊆ Out C2xC3:S348(C2xC3:S3):7Dic3432,766

Non-split extensions G=N.Q with N=C2xC3:S3 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C2xC3:S3).1Dic3 = C32:C6:C8φ: Dic3/C2S3 ⊆ Out C2xC3:S3726(C2xC3:S3).1Dic3432,76
(C2xC3:S3).2Dic3 = He3:M4(2)φ: Dic3/C2S3 ⊆ Out C2xC3:S3726(C2xC3:S3).2Dic3432,77
(C2xC3:S3).3Dic3 = C2xC3:F9φ: Dic3/C3C4 ⊆ Out C2xC3:S3488(C2xC3:S3).3Dic3432,752
(C2xC3:S3).4Dic3 = C33:8M4(2)φ: Dic3/C6C2 ⊆ Out C2xC3:S3144(C2xC3:S3).4Dic3432,434
(C2xC3:S3).5Dic3 = C12.93S32φ: Dic3/C6C2 ⊆ Out C2xC3:S3484(C2xC3:S3).5Dic3432,455
(C2xC3:S3).6Dic3 = C33:10M4(2)φ: Dic3/C6C2 ⊆ Out C2xC3:S3484(C2xC3:S3).6Dic3432,456
(C2xC3:S3).7Dic3 = C33:7(C2xC8)φ: Dic3/C6C2 ⊆ Out C2xC3:S3484(C2xC3:S3).7Dic3432,635
(C2xC3:S3).8Dic3 = C33:4M4(2)φ: Dic3/C6C2 ⊆ Out C2xC3:S3484(C2xC3:S3).8Dic3432,636
(C2xC3:S3).9Dic3 = C3:S3xC3:C8φ: trivial image144(C2xC3:S3).9Dic3432,431

׿
x
:
Z
F
o
wr
Q
<