Extensions 1→N→G→Q→1 with N=C9⋊C24 and Q=C2

Direct product G=N×Q with N=C9⋊C24 and Q=C2
dρLabelID
C2×C9⋊C24144C2xC9:C24432,142

Semidirect products G=N:Q with N=C9⋊C24 and Q=C2
extensionφ:Q→Out NdρLabelID
C9⋊C241C2 = Dic18⋊C6φ: C2/C1C2 ⊆ Out C9⋊C247212-C9:C24:1C2432,154
C9⋊C242C2 = D36⋊C6φ: C2/C1C2 ⊆ Out C9⋊C247212+C9:C24:2C2432,155
C9⋊C243C2 = D36.C6φ: C2/C1C2 ⊆ Out C9⋊C247212+C9:C24:3C2432,163
C9⋊C244C2 = C72⋊C6φ: C2/C1C2 ⊆ Out C9⋊C24726C9:C24:4C2432,121
C9⋊C245C2 = C36.C12φ: C2/C1C2 ⊆ Out C9⋊C24726C9:C24:5C2432,143
C9⋊C246C2 = C8×C9⋊C6φ: trivial image726C9:C24:6C2432,120

Non-split extensions G=N.Q with N=C9⋊C24 and Q=C2
extensionφ:Q→Out NdρLabelID
C9⋊C24.C2 = Dic18.C6φ: C2/C1C2 ⊆ Out C9⋊C2414412-C9:C24.C2432,162

׿
×
𝔽