direct product, metacyclic, supersoluble, monomial
Aliases: C8×C9⋊C6, D9⋊C24, C72⋊3C6, D18.2C12, Dic9.2C12, C9⋊C8⋊6C6, (C8×D9)⋊C3, C9⋊C24⋊6C2, C9⋊1(C2×C24), C32.(S3×C8), C9⋊C12.2C4, C3.3(S3×C24), C6.9(S3×C12), (C3×C24).9S3, (C4×D9).3C6, C24.21(C3×S3), C12.88(S3×C6), C36.13(C2×C6), C18.1(C2×C12), (C3×C12).58D6, 3- 1+2⋊1(C2×C8), (C8×3- 1+2)⋊3C2, (C4×3- 1+2).12C22, C2.1(C4×C9⋊C6), (C2×C9⋊C6).2C4, (C4×C9⋊C6).3C2, C4.12(C2×C9⋊C6), (C3×C6).12(C4×S3), (C2×3- 1+2).1(C2×C4), SmallGroup(432,120)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C9 — C18 — C36 — C4×3- 1+2 — C4×C9⋊C6 — C8×C9⋊C6 |
C9 — C8×C9⋊C6 |
Generators and relations for C8×C9⋊C6
G = < a,b,c | a8=b9=c6=1, ab=ba, ac=ca, cbc-1=b2 >
Subgroups: 222 in 70 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, D9, C18, C18, C3×S3, C3×C6, C3⋊C8, C24, C24, C4×S3, C2×C12, 3- 1+2, Dic9, C36, C36, D18, C3×Dic3, C3×C12, S3×C6, S3×C8, C2×C24, C9⋊C6, C2×3- 1+2, C9⋊C8, C72, C72, C4×D9, C3×C3⋊C8, C3×C24, S3×C12, C9⋊C12, C4×3- 1+2, C2×C9⋊C6, C8×D9, S3×C24, C9⋊C24, C8×3- 1+2, C4×C9⋊C6, C8×C9⋊C6
Quotients: C1, C2, C3, C4, C22, S3, C6, C8, C2×C4, C12, D6, C2×C6, C2×C8, C3×S3, C24, C4×S3, C2×C12, S3×C6, S3×C8, C2×C24, C9⋊C6, S3×C12, C2×C9⋊C6, S3×C24, C4×C9⋊C6, C8×C9⋊C6
(1 65 29 47 11 56 20 38)(2 66 30 48 12 57 21 39)(3 67 31 49 13 58 22 40)(4 68 32 50 14 59 23 41)(5 69 33 51 15 60 24 42)(6 70 34 52 16 61 25 43)(7 71 35 53 17 62 26 44)(8 72 36 54 18 63 27 45)(9 64 28 46 10 55 19 37)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(2 6 8 9 5 3)(4 7)(10 15 13 12 16 18)(14 17)(19 24 22 21 25 27)(23 26)(28 33 31 30 34 36)(32 35)(37 42 40 39 43 45)(41 44)(46 51 49 48 52 54)(50 53)(55 60 58 57 61 63)(59 62)(64 69 67 66 70 72)(68 71)
G:=sub<Sym(72)| (1,65,29,47,11,56,20,38)(2,66,30,48,12,57,21,39)(3,67,31,49,13,58,22,40)(4,68,32,50,14,59,23,41)(5,69,33,51,15,60,24,42)(6,70,34,52,16,61,25,43)(7,71,35,53,17,62,26,44)(8,72,36,54,18,63,27,45)(9,64,28,46,10,55,19,37), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,6,8,9,5,3)(4,7)(10,15,13,12,16,18)(14,17)(19,24,22,21,25,27)(23,26)(28,33,31,30,34,36)(32,35)(37,42,40,39,43,45)(41,44)(46,51,49,48,52,54)(50,53)(55,60,58,57,61,63)(59,62)(64,69,67,66,70,72)(68,71)>;
G:=Group( (1,65,29,47,11,56,20,38)(2,66,30,48,12,57,21,39)(3,67,31,49,13,58,22,40)(4,68,32,50,14,59,23,41)(5,69,33,51,15,60,24,42)(6,70,34,52,16,61,25,43)(7,71,35,53,17,62,26,44)(8,72,36,54,18,63,27,45)(9,64,28,46,10,55,19,37), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,6,8,9,5,3)(4,7)(10,15,13,12,16,18)(14,17)(19,24,22,21,25,27)(23,26)(28,33,31,30,34,36)(32,35)(37,42,40,39,43,45)(41,44)(46,51,49,48,52,54)(50,53)(55,60,58,57,61,63)(59,62)(64,69,67,66,70,72)(68,71) );
G=PermutationGroup([[(1,65,29,47,11,56,20,38),(2,66,30,48,12,57,21,39),(3,67,31,49,13,58,22,40),(4,68,32,50,14,59,23,41),(5,69,33,51,15,60,24,42),(6,70,34,52,16,61,25,43),(7,71,35,53,17,62,26,44),(8,72,36,54,18,63,27,45),(9,64,28,46,10,55,19,37)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(2,6,8,9,5,3),(4,7),(10,15,13,12,16,18),(14,17),(19,24,22,21,25,27),(23,26),(28,33,31,30,34,36),(32,35),(37,42,40,39,43,45),(41,44),(46,51,49,48,52,54),(50,53),(55,60,58,57,61,63),(59,62),(64,69,67,66,70,72),(68,71)]])
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 18A | 18B | 18C | 24A | 24B | 24C | 24D | 24E | ··· | 24L | 24M | ··· | 24T | 36A | ··· | 36F | 72A | ··· | 72L |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 24 | 24 | 24 | 24 | 24 | ··· | 24 | 24 | ··· | 24 | 36 | ··· | 36 | 72 | ··· | 72 |
size | 1 | 1 | 9 | 9 | 2 | 3 | 3 | 1 | 1 | 9 | 9 | 2 | 3 | 3 | 9 | 9 | 9 | 9 | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 6 | 6 | 6 | 2 | 2 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 9 | ··· | 9 | 6 | ··· | 6 | 6 | ··· | 6 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | ||||||||||||||||||
image | C1 | C2 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C6 | C8 | C12 | C12 | C24 | S3 | D6 | C3×S3 | C4×S3 | S3×C6 | S3×C8 | S3×C12 | S3×C24 | C9⋊C6 | C2×C9⋊C6 | C4×C9⋊C6 | C8×C9⋊C6 |
kernel | C8×C9⋊C6 | C9⋊C24 | C8×3- 1+2 | C4×C9⋊C6 | C8×D9 | C9⋊C12 | C2×C9⋊C6 | C9⋊C8 | C72 | C4×D9 | C9⋊C6 | Dic9 | D18 | D9 | C3×C24 | C3×C12 | C24 | C3×C6 | C12 | C32 | C6 | C3 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 4 | 4 | 16 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 1 | 1 | 2 | 4 |
Matrix representation of C8×C9⋊C6 ►in GL6(𝔽73)
22 | 0 | 0 | 0 | 0 | 0 |
0 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 0 | 0 | 0 |
0 | 0 | 0 | 22 | 0 | 0 |
0 | 0 | 0 | 0 | 22 | 0 |
0 | 0 | 0 | 0 | 0 | 22 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 72 | 72 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(73))| [22,0,0,0,0,0,0,22,0,0,0,0,0,0,22,0,0,0,0,0,0,22,0,0,0,0,0,0,22,0,0,0,0,0,0,22],[0,0,0,0,1,0,0,0,0,0,0,1,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,72,1,0,0,1,72,0,0,0,0,0,72,0,0] >;
C8×C9⋊C6 in GAP, Magma, Sage, TeX
C_8\times C_9\rtimes C_6
% in TeX
G:=Group("C8xC9:C6");
// GroupNames label
G:=SmallGroup(432,120);
// by ID
G=gap.SmallGroup(432,120);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,92,80,10085,2035,292,14118]);
// Polycyclic
G:=Group<a,b,c|a^8=b^9=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations