Copied to
clipboard

G = C8×C9⋊C6order 432 = 24·33

Direct product of C8 and C9⋊C6

direct product, metacyclic, supersoluble, monomial

Aliases: C8×C9⋊C6, D9⋊C24, C723C6, D18.2C12, Dic9.2C12, C9⋊C86C6, (C8×D9)⋊C3, C9⋊C246C2, C91(C2×C24), C32.(S3×C8), C9⋊C12.2C4, C3.3(S3×C24), C6.9(S3×C12), (C3×C24).9S3, (C4×D9).3C6, C24.21(C3×S3), C12.88(S3×C6), C36.13(C2×C6), C18.1(C2×C12), (C3×C12).58D6, 3- 1+21(C2×C8), (C8×3- 1+2)⋊3C2, (C4×3- 1+2).12C22, C2.1(C4×C9⋊C6), (C2×C9⋊C6).2C4, (C4×C9⋊C6).3C2, C4.12(C2×C9⋊C6), (C3×C6).12(C4×S3), (C2×3- 1+2).1(C2×C4), SmallGroup(432,120)

Series: Derived Chief Lower central Upper central

C1C9 — C8×C9⋊C6
C1C3C9C18C36C4×3- 1+2C4×C9⋊C6 — C8×C9⋊C6
C9 — C8×C9⋊C6
C1C8

Generators and relations for C8×C9⋊C6
 G = < a,b,c | a8=b9=c6=1, ab=ba, ac=ca, cbc-1=b2 >

Subgroups: 222 in 70 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, D9, C18, C18, C3×S3, C3×C6, C3⋊C8, C24, C24, C4×S3, C2×C12, 3- 1+2, Dic9, C36, C36, D18, C3×Dic3, C3×C12, S3×C6, S3×C8, C2×C24, C9⋊C6, C2×3- 1+2, C9⋊C8, C72, C72, C4×D9, C3×C3⋊C8, C3×C24, S3×C12, C9⋊C12, C4×3- 1+2, C2×C9⋊C6, C8×D9, S3×C24, C9⋊C24, C8×3- 1+2, C4×C9⋊C6, C8×C9⋊C6
Quotients: C1, C2, C3, C4, C22, S3, C6, C8, C2×C4, C12, D6, C2×C6, C2×C8, C3×S3, C24, C4×S3, C2×C12, S3×C6, S3×C8, C2×C24, C9⋊C6, S3×C12, C2×C9⋊C6, S3×C24, C4×C9⋊C6, C8×C9⋊C6

Smallest permutation representation of C8×C9⋊C6
On 72 points
Generators in S72
(1 65 29 47 11 56 20 38)(2 66 30 48 12 57 21 39)(3 67 31 49 13 58 22 40)(4 68 32 50 14 59 23 41)(5 69 33 51 15 60 24 42)(6 70 34 52 16 61 25 43)(7 71 35 53 17 62 26 44)(8 72 36 54 18 63 27 45)(9 64 28 46 10 55 19 37)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(2 6 8 9 5 3)(4 7)(10 15 13 12 16 18)(14 17)(19 24 22 21 25 27)(23 26)(28 33 31 30 34 36)(32 35)(37 42 40 39 43 45)(41 44)(46 51 49 48 52 54)(50 53)(55 60 58 57 61 63)(59 62)(64 69 67 66 70 72)(68 71)

G:=sub<Sym(72)| (1,65,29,47,11,56,20,38)(2,66,30,48,12,57,21,39)(3,67,31,49,13,58,22,40)(4,68,32,50,14,59,23,41)(5,69,33,51,15,60,24,42)(6,70,34,52,16,61,25,43)(7,71,35,53,17,62,26,44)(8,72,36,54,18,63,27,45)(9,64,28,46,10,55,19,37), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,6,8,9,5,3)(4,7)(10,15,13,12,16,18)(14,17)(19,24,22,21,25,27)(23,26)(28,33,31,30,34,36)(32,35)(37,42,40,39,43,45)(41,44)(46,51,49,48,52,54)(50,53)(55,60,58,57,61,63)(59,62)(64,69,67,66,70,72)(68,71)>;

G:=Group( (1,65,29,47,11,56,20,38)(2,66,30,48,12,57,21,39)(3,67,31,49,13,58,22,40)(4,68,32,50,14,59,23,41)(5,69,33,51,15,60,24,42)(6,70,34,52,16,61,25,43)(7,71,35,53,17,62,26,44)(8,72,36,54,18,63,27,45)(9,64,28,46,10,55,19,37), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (2,6,8,9,5,3)(4,7)(10,15,13,12,16,18)(14,17)(19,24,22,21,25,27)(23,26)(28,33,31,30,34,36)(32,35)(37,42,40,39,43,45)(41,44)(46,51,49,48,52,54)(50,53)(55,60,58,57,61,63)(59,62)(64,69,67,66,70,72)(68,71) );

G=PermutationGroup([[(1,65,29,47,11,56,20,38),(2,66,30,48,12,57,21,39),(3,67,31,49,13,58,22,40),(4,68,32,50,14,59,23,41),(5,69,33,51,15,60,24,42),(6,70,34,52,16,61,25,43),(7,71,35,53,17,62,26,44),(8,72,36,54,18,63,27,45),(9,64,28,46,10,55,19,37)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(2,6,8,9,5,3),(4,7),(10,15,13,12,16,18),(14,17),(19,24,22,21,25,27),(23,26),(28,33,31,30,34,36),(32,35),(37,42,40,39,43,45),(41,44),(46,51,49,48,52,54),(50,53),(55,60,58,57,61,63),(59,62),(64,69,67,66,70,72),(68,71)]])

80 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D6A6B6C6D6E6F6G8A8B8C8D8E8F8G8H9A9B9C12A12B12C12D12E12F12G12H12I12J18A18B18C24A24B24C24D24E···24L24M···24T36A···36F72A···72L
order12223334444666666688888888999121212121212121212121818182424242424···2424···2436···3672···72
size11992331199233999911119999666223333999966622223···39···96···66···6

80 irreducible representations

dim11111111111111222222226666
type++++++++
imageC1C2C2C2C3C4C4C6C6C6C8C12C12C24S3D6C3×S3C4×S3S3×C6S3×C8S3×C12S3×C24C9⋊C6C2×C9⋊C6C4×C9⋊C6C8×C9⋊C6
kernelC8×C9⋊C6C9⋊C24C8×3- 1+2C4×C9⋊C6C8×D9C9⋊C12C2×C9⋊C6C9⋊C8C72C4×D9C9⋊C6Dic9D18D9C3×C24C3×C12C24C3×C6C12C32C6C3C8C4C2C1
# reps111122222284416112224481124

Matrix representation of C8×C9⋊C6 in GL6(𝔽73)

2200000
0220000
0022000
0002200
0000220
0000022
,
000100
00727200
000001
00007272
100000
010000
,
100000
72720000
000010
00007272
00727200
000100

G:=sub<GL(6,GF(73))| [22,0,0,0,0,0,0,22,0,0,0,0,0,0,22,0,0,0,0,0,0,22,0,0,0,0,0,0,22,0,0,0,0,0,0,22],[0,0,0,0,1,0,0,0,0,0,0,1,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,72,1,0,0,1,72,0,0,0,0,0,72,0,0] >;

C8×C9⋊C6 in GAP, Magma, Sage, TeX

C_8\times C_9\rtimes C_6
% in TeX

G:=Group("C8xC9:C6");
// GroupNames label

G:=SmallGroup(432,120);
// by ID

G=gap.SmallGroup(432,120);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,92,80,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^8=b^9=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^2>;
// generators/relations

׿
×
𝔽