Copied to
clipboard

G = C72⋊C6order 432 = 24·33

4th semidirect product of C72 and C6 acting faithfully

metacyclic, supersoluble, monomial

Aliases: C724C6, D18.C12, Dic9.C12, 3- 1+21M4(2), C9⋊C84C6, C9⋊C12.C4, C8⋊D9⋊C3, C9⋊C244C2, C83(C9⋊C6), (C4×D9).2C6, C24.22(C3×S3), C6.10(S3×C12), C12.89(S3×C6), C18.2(C2×C12), C36.14(C2×C6), (C3×C24).10S3, (C3×C12).59D6, C91(C3×M4(2)), C32.(C8⋊S3), (C8×3- 1+2)⋊4C2, (C4×3- 1+2).13C22, (C2×C9⋊C6).C4, C2.3(C4×C9⋊C6), (C4×C9⋊C6).2C2, C4.13(C2×C9⋊C6), C3.3(C3×C8⋊S3), (C3×C6).13(C4×S3), (C2×3- 1+2).2(C2×C4), SmallGroup(432,121)

Series: Derived Chief Lower central Upper central

C1C18 — C72⋊C6
C1C3C9C18C36C4×3- 1+2C4×C9⋊C6 — C72⋊C6
C9C18 — C72⋊C6
C1C4C8

Generators and relations for C72⋊C6
 G = < a,b | a72=b6=1, bab-1=a29 >

Subgroups: 222 in 64 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, C9, C9, C32, Dic3, C12, C12, D6, C2×C6, M4(2), D9, C18, C18, C3×S3, C3×C6, C3⋊C8, C24, C24, C4×S3, C2×C12, 3- 1+2, Dic9, C36, C36, D18, C3×Dic3, C3×C12, S3×C6, C8⋊S3, C3×M4(2), C9⋊C6, C2×3- 1+2, C9⋊C8, C72, C72, C4×D9, C3×C3⋊C8, C3×C24, S3×C12, C9⋊C12, C4×3- 1+2, C2×C9⋊C6, C8⋊D9, C3×C8⋊S3, C9⋊C24, C8×3- 1+2, C4×C9⋊C6, C72⋊C6
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, C12, D6, C2×C6, M4(2), C3×S3, C4×S3, C2×C12, S3×C6, C8⋊S3, C3×M4(2), C9⋊C6, S3×C12, C2×C9⋊C6, C3×C8⋊S3, C4×C9⋊C6, C72⋊C6

Smallest permutation representation of C72⋊C6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(2 6 26 54 50 30)(3 11 51 35 27 59)(4 16)(5 21 29 69 53 45)(7 31)(8 36 32 12 56 60)(9 41 57 65 33 17)(10 46)(13 61)(14 66 38 42 62 18)(15 71 63 23 39 47)(20 24 44 72 68 48)(22 34)(25 49)(28 64)(40 52)(43 67)(58 70)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,6,26,54,50,30)(3,11,51,35,27,59)(4,16)(5,21,29,69,53,45)(7,31)(8,36,32,12,56,60)(9,41,57,65,33,17)(10,46)(13,61)(14,66,38,42,62,18)(15,71,63,23,39,47)(20,24,44,72,68,48)(22,34)(25,49)(28,64)(40,52)(43,67)(58,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (2,6,26,54,50,30)(3,11,51,35,27,59)(4,16)(5,21,29,69,53,45)(7,31)(8,36,32,12,56,60)(9,41,57,65,33,17)(10,46)(13,61)(14,66,38,42,62,18)(15,71,63,23,39,47)(20,24,44,72,68,48)(22,34)(25,49)(28,64)(40,52)(43,67)(58,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(2,6,26,54,50,30),(3,11,51,35,27,59),(4,16),(5,21,29,69,53,45),(7,31),(8,36,32,12,56,60),(9,41,57,65,33,17),(10,46),(13,61),(14,66,38,42,62,18),(15,71,63,23,39,47),(20,24,44,72,68,48),(22,34),(25,49),(28,64),(40,52),(43,67),(58,70)]])

62 conjugacy classes

class 1 2A2B3A3B3C4A4B4C6A6B6C6D6E8A8B8C8D9A9B9C12A12B12C12D12E12F12G12H18A18B18C24A24B24C24D24E24F24G24H24I24J24K24L36A···36F72A···72L
order122333444666668888999121212121212121218181824242424242424242424242436···3672···72
size111823311182331818221818666223333181866622226666181818186···66···6

62 irreducible representations

dim11111111111122222222226666
type++++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12S3D6M4(2)C3×S3C4×S3S3×C6C3×M4(2)C8⋊S3S3×C12C3×C8⋊S3C9⋊C6C2×C9⋊C6C4×C9⋊C6C72⋊C6
kernelC72⋊C6C9⋊C24C8×3- 1+2C4×C9⋊C6C8⋊D9C9⋊C12C2×C9⋊C6C9⋊C8C72C4×D9Dic9D18C3×C24C3×C123- 1+2C24C3×C6C12C9C32C6C3C8C4C2C1
# reps11112222224411222244481124

Matrix representation of C72⋊C6 in GL6(𝔽73)

0000367
0000670
6730000
70700000
0067300
00707000
,
1720000
0720000
0000172
0000072
0072000
0072100

G:=sub<GL(6,GF(73))| [0,0,67,70,0,0,0,0,3,70,0,0,0,0,0,0,67,70,0,0,0,0,3,70,3,6,0,0,0,0,67,70,0,0,0,0],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,1,0,0,0,0,0,72,72,0,0] >;

C72⋊C6 in GAP, Magma, Sage, TeX

C_{72}\rtimes C_6
% in TeX

G:=Group("C72:C6");
// GroupNames label

G:=SmallGroup(432,121);
// by ID

G=gap.SmallGroup(432,121);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,365,92,80,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b|a^72=b^6=1,b*a*b^-1=a^29>;
// generators/relations

׿
×
𝔽