Copied to
clipboard

G = C36.C12order 432 = 24·33

1st non-split extension by C36 of C12 acting via C12/C2=C6

metacyclic, supersoluble, monomial

Aliases: C36.1C12, C62.4Dic3, 3- 1+22M4(2), C9⋊C85C6, C9⋊C245C2, C4.(C9⋊C12), C4.Dic9⋊C3, (C6×C12).6S3, (C2×C36).1C6, C12.95(S3×C6), C18.6(C2×C12), C36.16(C2×C6), (C2×C18).2C12, C22.(C9⋊C12), (C3×C12).63D6, C92(C3×M4(2)), C6.15(C6×Dic3), C12.5(C3×Dic3), (C3×C12).2Dic3, C32.(C4.Dic3), (C4×3- 1+2).1C4, (C22×3- 1+2).2C4, (C4×3- 1+2).15C22, C4.15(C2×C9⋊C6), C2.3(C2×C9⋊C12), (C2×C4).2(C9⋊C6), (C2×C12).24(C3×S3), C3.3(C3×C4.Dic3), (C2×C6).17(C3×Dic3), (C3×C6).11(C2×Dic3), (C2×C4×3- 1+2).1C2, (C2×3- 1+2).6(C2×C4), SmallGroup(432,143)

Series: Derived Chief Lower central Upper central

C1C18 — C36.C12
C1C3C9C18C36C4×3- 1+2C9⋊C24 — C36.C12
C9C18 — C36.C12
C1C4C2×C4

Generators and relations for C36.C12
 G = < a,b | a36=1, b12=a18, bab-1=a23 >

Subgroups: 158 in 68 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C8, C2×C4, C9, C9, C32, C12, C12, C2×C6, C2×C6, M4(2), C18, C18, C3×C6, C3×C6, C3⋊C8, C24, C2×C12, C2×C12, 3- 1+2, C36, C36, C2×C18, C2×C18, C3×C12, C62, C4.Dic3, C3×M4(2), C2×3- 1+2, C2×3- 1+2, C9⋊C8, C2×C36, C2×C36, C3×C3⋊C8, C6×C12, C4×3- 1+2, C22×3- 1+2, C4.Dic9, C3×C4.Dic3, C9⋊C24, C2×C4×3- 1+2, C36.C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, Dic3, C12, D6, C2×C6, M4(2), C3×S3, C2×Dic3, C2×C12, C3×Dic3, S3×C6, C4.Dic3, C3×M4(2), C9⋊C6, C6×Dic3, C9⋊C12, C2×C9⋊C6, C3×C4.Dic3, C2×C9⋊C12, C36.C12

Smallest permutation representation of C36.C12
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 47 10 38 19 65 28 56)(2 58 23 37 8 52 29 67 14 46 35 61 20 40 5 55 26 70 11 49 32 64 17 43)(3 69 36 72 33 39 30 42 27 45 24 48 21 51 18 54 15 57 12 60 9 63 6 66)(4 44 13 71 22 62 31 53)(7 41 16 68 25 59 34 50)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,47,10,38,19,65,28,56)(2,58,23,37,8,52,29,67,14,46,35,61,20,40,5,55,26,70,11,49,32,64,17,43)(3,69,36,72,33,39,30,42,27,45,24,48,21,51,18,54,15,57,12,60,9,63,6,66)(4,44,13,71,22,62,31,53)(7,41,16,68,25,59,34,50)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,47,10,38,19,65,28,56)(2,58,23,37,8,52,29,67,14,46,35,61,20,40,5,55,26,70,11,49,32,64,17,43)(3,69,36,72,33,39,30,42,27,45,24,48,21,51,18,54,15,57,12,60,9,63,6,66)(4,44,13,71,22,62,31,53)(7,41,16,68,25,59,34,50) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,47,10,38,19,65,28,56),(2,58,23,37,8,52,29,67,14,46,35,61,20,40,5,55,26,70,11,49,32,64,17,43),(3,69,36,72,33,39,30,42,27,45,24,48,21,51,18,54,15,57,12,60,9,63,6,66),(4,44,13,71,22,62,31,53),(7,41,16,68,25,59,34,50)]])

62 conjugacy classes

class 1 2A2B3A3B3C4A4B4C6A6B6C6D6E6F6G8A8B8C8D9A9B9C12A12B12C12D12E12F12G12H12I12J18A···18I24A···24H36A···36L
order122333444666666688889991212121212121212121218···1824···2436···36
size11223311222233661818181866622223333666···618···186···6

62 irreducible representations

dim111111111122222222222266666
type++++-+-+-+-
imageC1C2C2C3C4C4C6C6C12C12S3Dic3D6Dic3M4(2)C3×S3C3×Dic3S3×C6C3×Dic3C3×M4(2)C4.Dic3C3×C4.Dic3C9⋊C6C9⋊C12C2×C9⋊C6C9⋊C12C36.C12
kernelC36.C12C9⋊C24C2×C4×3- 1+2C4.Dic9C4×3- 1+2C22×3- 1+2C9⋊C8C2×C36C36C2×C18C6×C12C3×C12C3×C12C623- 1+2C2×C12C12C12C2×C6C9C32C3C2×C4C4C4C22C1
# reps121222424411112222244811114

Matrix representation of C36.C12 in GL6(𝔽73)

70300000
0370000
2430000
2190003
22002400
21090240
,
20007100
002029600
5914029042
4005300
192900059
370680530

G:=sub<GL(6,GF(73))| [70,0,24,21,22,21,30,3,3,9,0,0,0,70,0,0,0,9,0,0,0,0,24,0,0,0,0,0,0,24,0,0,0,3,0,0],[20,0,59,4,19,37,0,0,14,0,29,0,0,20,0,0,0,68,71,29,29,53,0,0,0,60,0,0,0,53,0,0,42,0,59,0] >;

C36.C12 in GAP, Magma, Sage, TeX

C_{36}.C_{12}
% in TeX

G:=Group("C36.C12");
// GroupNames label

G:=SmallGroup(432,143);
// by ID

G=gap.SmallGroup(432,143);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,365,80,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b|a^36=1,b^12=a^18,b*a*b^-1=a^23>;
// generators/relations

׿
×
𝔽