Extensions 1→N→G→Q→1 with N=He32C8 and Q=C2

Direct product G=N×Q with N=He32C8 and Q=C2
dρLabelID
C2×He32C8144C2xHe3:2C8432,277

Semidirect products G=N:Q with N=He32C8 and Q=C2
extensionφ:Q→Out NdρLabelID
He32C81C2 = He3⋊D8φ: C2/C1C2 ⊆ Out He32C8726+He3:2C8:1C2432,235
He32C82C2 = He32SD16φ: C2/C1C2 ⊆ Out He32C8726He3:2C8:2C2432,234
He32C83C2 = He31M4(2)φ: C2/C1C2 ⊆ Out He32C8726He3:2C8:3C2432,274
He32C84C2 = He34M4(2)φ: C2/C1C2 ⊆ Out He32C8726He3:2C8:4C2432,278
He32C85C2 = He32(C2×C8)φ: trivial image723He3:2C8:5C2432,273

Non-split extensions G=N.Q with N=He32C8 and Q=C2
extensionφ:Q→Out NdρLabelID
He32C8.1C2 = He3⋊Q16φ: C2/C1C2 ⊆ Out He32C81446-He3:2C8.1C2432,236
He32C8.2C2 = He3⋊C16φ: C2/C1C2 ⊆ Out He32C81446He3:2C8.2C2432,233

׿
×
𝔽