Aliases: He3⋊2SD16, C6.1S3≀C2, He3⋊2D4.C2, He3⋊2C8⋊2C2, He3⋊2Q8⋊1C2, C2.3(He3⋊D4), (C2×He3).1D4, C3.(C32⋊2SD16), He3⋊3C4.1C22, SmallGroup(432,234)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — He3 — He3⋊3C4 — He3⋊2SD16 |
C1 — C3 — He3 — C2×He3 — He3⋊3C4 — He3⋊2D4 — He3⋊2SD16 |
He3 — C2×He3 — He3⋊3C4 — He3⋊2SD16 |
Generators and relations for He3⋊2SD16
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, eae=ab=ba, cac-1=ab-1, dad-1=cb=bc, bd=db, ebe=b-1, dcd-1=a-1b, ece=c-1, ede=d3 >
Subgroups: 539 in 58 conjugacy classes, 11 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, Q8, C32, Dic3, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C24, Dic6, D12, C3⋊D4, He3, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C24⋊C2, C32⋊C6, C2×He3, C3⋊D12, C32⋊2Q8, C32⋊C12, He3⋊3C4, C2×C32⋊C6, He3⋊2C8, He3⋊2Q8, He3⋊2D4, He3⋊2SD16
Quotients: C1, C2, C22, D4, SD16, S3≀C2, C32⋊2SD16, He3⋊D4, He3⋊2SD16
Character table of He3⋊2SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 36 | 2 | 12 | 12 | 18 | 36 | 2 | 12 | 12 | 36 | 36 | 18 | 18 | 18 | 18 | 36 | 36 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | √-2 | -√-2 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ7 | 2 | -2 | 0 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | -√-2 | √-2 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ8 | 4 | 4 | 0 | 4 | 1 | -2 | 0 | -2 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ9 | 4 | 4 | 0 | 4 | 1 | -2 | 0 | 2 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ10 | 4 | 4 | 2 | 4 | -2 | 1 | 0 | 0 | 4 | 1 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ11 | 4 | 4 | -2 | 4 | -2 | 1 | 0 | 0 | 4 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ12 | 4 | -4 | 0 | 4 | 1 | -2 | 0 | 0 | -4 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | √3 | -√3 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ13 | 4 | -4 | 0 | 4 | 1 | -2 | 0 | 0 | -4 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -√3 | √3 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2SD16, Schur index 2 |
ρ14 | 4 | -4 | 0 | 4 | -2 | 1 | 0 | 0 | -4 | -1 | 2 | -√-3 | √-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ15 | 4 | -4 | 0 | 4 | -2 | 1 | 0 | 0 | -4 | -1 | 2 | √-3 | -√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊2SD16 |
ρ16 | 6 | 6 | 0 | -3 | 0 | 0 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from He3⋊D4 |
ρ17 | 6 | 6 | 0 | -3 | 0 | 0 | -2 | 0 | -3 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from He3⋊D4 |
ρ18 | 6 | 6 | 0 | -3 | 0 | 0 | 2 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | √3 | -√3 | -√3 | √3 | orthogonal lifted from He3⋊D4 |
ρ19 | 6 | 6 | 0 | -3 | 0 | 0 | 2 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 0 | 0 | -√3 | √3 | √3 | -√3 | orthogonal lifted from He3⋊D4 |
ρ20 | 6 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √3 | -√3 | 0 | 0 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | complex faithful |
ρ21 | 6 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√3 | √3 | 0 | 0 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ32+ζ87-ζ85ζ32 | complex faithful |
ρ22 | 6 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√3 | √3 | 0 | 0 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | complex faithful |
ρ23 | 6 | -6 | 0 | -3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √3 | -√3 | 0 | 0 | ζ87ζ3+ζ87-ζ85ζ3 | ζ83ζ32+ζ83-ζ8ζ32 | ζ87ζ32+ζ87-ζ85ζ32 | ζ83ζ3+ζ83-ζ8ζ3 | complex faithful |
(1 41 15)(2 32 64)(3 43 9)(4 21 33)(5 45 11)(6 28 60)(7 47 13)(8 17 37)(10 66 26)(12 53 23)(14 70 30)(16 49 19)(18 71 63)(22 67 59)(25 50 40)(29 54 36)(35 68 46)(39 72 42)(44 58 51)(48 62 55)
(1 41 15)(2 42 16)(3 43 9)(4 44 10)(5 45 11)(6 46 12)(7 47 13)(8 48 14)(17 62 70)(18 63 71)(19 64 72)(20 57 65)(21 58 66)(22 59 67)(23 60 68)(24 61 69)(25 40 50)(26 33 51)(27 34 52)(28 35 53)(29 36 54)(30 37 55)(31 38 56)(32 39 49)
(1 56 71)(3 65 50)(5 52 67)(7 69 54)(9 57 40)(11 34 59)(13 61 36)(15 38 63)(17 62 70)(18 41 31)(19 72 64)(20 25 43)(21 58 66)(22 45 27)(23 68 60)(24 29 47)(26 51 33)(28 35 53)(30 55 37)(32 39 49)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 47)(10 42)(11 45)(12 48)(13 43)(14 46)(15 41)(16 44)(17 35)(18 38)(19 33)(20 36)(21 39)(22 34)(23 37)(24 40)(25 61)(26 64)(27 59)(28 62)(29 57)(30 60)(31 63)(32 58)(49 66)(50 69)(51 72)(52 67)(53 70)(54 65)(55 68)(56 71)
G:=sub<Sym(72)| (1,41,15)(2,32,64)(3,43,9)(4,21,33)(5,45,11)(6,28,60)(7,47,13)(8,17,37)(10,66,26)(12,53,23)(14,70,30)(16,49,19)(18,71,63)(22,67,59)(25,50,40)(29,54,36)(35,68,46)(39,72,42)(44,58,51)(48,62,55), (1,41,15)(2,42,16)(3,43,9)(4,44,10)(5,45,11)(6,46,12)(7,47,13)(8,48,14)(17,62,70)(18,63,71)(19,64,72)(20,57,65)(21,58,66)(22,59,67)(23,60,68)(24,61,69)(25,40,50)(26,33,51)(27,34,52)(28,35,53)(29,36,54)(30,37,55)(31,38,56)(32,39,49), (1,56,71)(3,65,50)(5,52,67)(7,69,54)(9,57,40)(11,34,59)(13,61,36)(15,38,63)(17,62,70)(18,41,31)(19,72,64)(20,25,43)(21,58,66)(22,45,27)(23,68,60)(24,29,47)(26,51,33)(28,35,53)(30,55,37)(32,39,49), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,47)(10,42)(11,45)(12,48)(13,43)(14,46)(15,41)(16,44)(17,35)(18,38)(19,33)(20,36)(21,39)(22,34)(23,37)(24,40)(25,61)(26,64)(27,59)(28,62)(29,57)(30,60)(31,63)(32,58)(49,66)(50,69)(51,72)(52,67)(53,70)(54,65)(55,68)(56,71)>;
G:=Group( (1,41,15)(2,32,64)(3,43,9)(4,21,33)(5,45,11)(6,28,60)(7,47,13)(8,17,37)(10,66,26)(12,53,23)(14,70,30)(16,49,19)(18,71,63)(22,67,59)(25,50,40)(29,54,36)(35,68,46)(39,72,42)(44,58,51)(48,62,55), (1,41,15)(2,42,16)(3,43,9)(4,44,10)(5,45,11)(6,46,12)(7,47,13)(8,48,14)(17,62,70)(18,63,71)(19,64,72)(20,57,65)(21,58,66)(22,59,67)(23,60,68)(24,61,69)(25,40,50)(26,33,51)(27,34,52)(28,35,53)(29,36,54)(30,37,55)(31,38,56)(32,39,49), (1,56,71)(3,65,50)(5,52,67)(7,69,54)(9,57,40)(11,34,59)(13,61,36)(15,38,63)(17,62,70)(18,41,31)(19,72,64)(20,25,43)(21,58,66)(22,45,27)(23,68,60)(24,29,47)(26,51,33)(28,35,53)(30,55,37)(32,39,49), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,47)(10,42)(11,45)(12,48)(13,43)(14,46)(15,41)(16,44)(17,35)(18,38)(19,33)(20,36)(21,39)(22,34)(23,37)(24,40)(25,61)(26,64)(27,59)(28,62)(29,57)(30,60)(31,63)(32,58)(49,66)(50,69)(51,72)(52,67)(53,70)(54,65)(55,68)(56,71) );
G=PermutationGroup([[(1,41,15),(2,32,64),(3,43,9),(4,21,33),(5,45,11),(6,28,60),(7,47,13),(8,17,37),(10,66,26),(12,53,23),(14,70,30),(16,49,19),(18,71,63),(22,67,59),(25,50,40),(29,54,36),(35,68,46),(39,72,42),(44,58,51),(48,62,55)], [(1,41,15),(2,42,16),(3,43,9),(4,44,10),(5,45,11),(6,46,12),(7,47,13),(8,48,14),(17,62,70),(18,63,71),(19,64,72),(20,57,65),(21,58,66),(22,59,67),(23,60,68),(24,61,69),(25,40,50),(26,33,51),(27,34,52),(28,35,53),(29,36,54),(30,37,55),(31,38,56),(32,39,49)], [(1,56,71),(3,65,50),(5,52,67),(7,69,54),(9,57,40),(11,34,59),(13,61,36),(15,38,63),(17,62,70),(18,41,31),(19,72,64),(20,25,43),(21,58,66),(22,45,27),(23,68,60),(24,29,47),(26,51,33),(28,35,53),(30,55,37),(32,39,49)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,47),(10,42),(11,45),(12,48),(13,43),(14,46),(15,41),(16,44),(17,35),(18,38),(19,33),(20,36),(21,39),(22,34),(23,37),(24,40),(25,61),(26,64),(27,59),(28,62),(29,57),(30,60),(31,63),(32,58),(49,66),(50,69),(51,72),(52,67),(53,70),(54,65),(55,68),(56,71)]])
Matrix representation of He3⋊2SD16 ►in GL6(𝔽73)
72 | 1 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
72 | 1 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 4 | 40 | 4 | 40 | 4 |
69 | 44 | 69 | 44 | 69 | 44 |
40 | 4 | 4 | 29 | 29 | 40 |
69 | 44 | 44 | 33 | 33 | 69 |
40 | 4 | 29 | 40 | 4 | 29 |
69 | 44 | 33 | 69 | 44 | 33 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 72 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[40,69,40,69,40,69,4,44,4,44,4,44,40,69,4,44,29,33,4,44,29,33,40,69,40,69,29,33,4,44,4,44,40,69,29,33],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,1,0,0,0,0,0,72,72,0,0] >;
He3⋊2SD16 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_2{\rm SD}_{16}
% in TeX
G:=Group("He3:2SD16");
// GroupNames label
G:=SmallGroup(432,234);
// by ID
G=gap.SmallGroup(432,234);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,85,64,254,135,58,1124,851,298,348,1027,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,e*a*e=a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=c*b=b*c,b*d=d*b,e*b*e=b^-1,d*c*d^-1=a^-1*b,e*c*e=c^-1,e*d*e=d^3>;
// generators/relations
Export