Copied to
clipboard

G = He32C8order 216 = 23·33

The semidirect product of He3 and C8 acting via C8/C2=C4

non-abelian, soluble

Aliases: He32C8, C2.(He3⋊C4), (C2×He3).C4, C6.2(C32⋊C4), C3.(C322C8), He33C4.1C2, SmallGroup(216,25)

Series: Derived Chief Lower central Upper central

C1C3He3 — He32C8
C1C3He3C2×He3He33C4 — He32C8
He3 — He32C8
C1C6

Generators and relations for He32C8
 G = < a,b,c,d | a3=b3=c3=d8=1, ab=ba, cac-1=ab-1, dad-1=abc, bc=cb, bd=db, dcd-1=ac-1 >

6C3
6C3
9C4
6C6
6C6
2C32
2C32
9C8
6Dic3
6Dic3
9C12
2C3×C6
2C3×C6
9C24
6C3×Dic3
6C3×Dic3

Character table of He32C8

 class 123A3B3C3D4A4B6A6B6C6D8A8B8C8D12A12B12C12D24A24B24C24D24E24F24G24H
 size 11111212991112129999999999999999
ρ11111111111111111111111111111    trivial
ρ2111111111111-1-1-1-11111-1-1-1-1-1-1-1-1    linear of order 2
ρ3111111-1-11111-iii-i-1-1-1-1iii-i-ii-i-i    linear of order 4
ρ4111111-1-11111i-i-ii-1-1-1-1-i-i-iii-iii    linear of order 4
ρ51-11111i-i-1-1-1-1ζ85ζ83ζ87ζ8i-ii-iζ87ζ87ζ83ζ8ζ8ζ83ζ85ζ85    linear of order 8
ρ61-11111-ii-1-1-1-1ζ87ζ8ζ85ζ83-ii-iiζ85ζ85ζ8ζ83ζ83ζ8ζ87ζ87    linear of order 8
ρ71-11111i-i-1-1-1-1ζ8ζ87ζ83ζ85i-ii-iζ83ζ83ζ87ζ85ζ85ζ87ζ8ζ8    linear of order 8
ρ81-11111-ii-1-1-1-1ζ83ζ85ζ8ζ87-ii-iiζ8ζ8ζ85ζ87ζ87ζ85ζ83ζ83    linear of order 8
ρ933-3-3-3/2-3+3-3/200-1-1-3+3-3/2-3-3-3/200-1-1-1-1ζ65ζ6ζ6ζ65ζ65ζ6ζ6ζ65ζ6ζ65ζ65ζ6    complex lifted from He3⋊C4
ρ1033-3+3-3/2-3-3-3/200-1-1-3-3-3/2-3+3-3/2001111ζ6ζ65ζ65ζ6ζ32ζ3ζ3ζ32ζ3ζ32ζ32ζ3    complex lifted from He3⋊C4
ρ1133-3-3-3/2-3+3-3/200-1-1-3+3-3/2-3-3-3/2001111ζ65ζ6ζ6ζ65ζ3ζ32ζ32ζ3ζ32ζ3ζ3ζ32    complex lifted from He3⋊C4
ρ1233-3+3-3/2-3-3-3/200-1-1-3-3-3/2-3+3-3/200-1-1-1-1ζ6ζ65ζ65ζ6ζ6ζ65ζ65ζ6ζ65ζ6ζ6ζ65    complex lifted from He3⋊C4
ρ1333-3-3-3/2-3+3-3/20011-3+3-3/2-3-3-3/200i-i-iiζ3ζ32ζ32ζ3ζ43ζ3ζ43ζ32ζ43ζ32ζ4ζ3ζ4ζ32ζ43ζ3ζ4ζ3ζ4ζ32    complex lifted from He3⋊C4
ρ1433-3-3-3/2-3+3-3/20011-3+3-3/2-3-3-3/200-iii-iζ3ζ32ζ32ζ3ζ4ζ3ζ4ζ32ζ4ζ32ζ43ζ3ζ43ζ32ζ4ζ3ζ43ζ3ζ43ζ32    complex lifted from He3⋊C4
ρ1533-3+3-3/2-3-3-3/20011-3-3-3/2-3+3-3/200i-i-iiζ32ζ3ζ3ζ32ζ43ζ32ζ43ζ3ζ43ζ3ζ4ζ32ζ4ζ3ζ43ζ32ζ4ζ32ζ4ζ3    complex lifted from He3⋊C4
ρ1633-3+3-3/2-3-3-3/20011-3-3-3/2-3+3-3/200-iii-iζ32ζ3ζ3ζ32ζ4ζ32ζ4ζ3ζ4ζ3ζ43ζ32ζ43ζ3ζ4ζ32ζ43ζ32ζ43ζ3    complex lifted from He3⋊C4
ρ173-3-3+3-3/2-3-3-3/200-ii3+3-3/23-3-3/200ζ85ζ83ζ87ζ8ζ86ζ32ζ82ζ3ζ86ζ3ζ82ζ32ζ87ζ32ζ87ζ3ζ83ζ3ζ8ζ32ζ8ζ3ζ83ζ32ζ85ζ32ζ85ζ3    complex faithful
ρ183-3-3-3-3/2-3+3-3/200-ii3-3-3/23+3-3/200ζ85ζ83ζ87ζ8ζ86ζ3ζ82ζ32ζ86ζ32ζ82ζ3ζ87ζ3ζ87ζ32ζ83ζ32ζ8ζ3ζ8ζ32ζ83ζ3ζ85ζ3ζ85ζ32    complex faithful
ρ193-3-3-3-3/2-3+3-3/200i-i3-3-3/23+3-3/200ζ87ζ8ζ85ζ83ζ82ζ3ζ86ζ32ζ82ζ32ζ86ζ3ζ85ζ3ζ85ζ32ζ8ζ32ζ83ζ3ζ83ζ32ζ8ζ3ζ87ζ3ζ87ζ32    complex faithful
ρ203-3-3+3-3/2-3-3-3/200i-i3+3-3/23-3-3/200ζ83ζ85ζ8ζ87ζ82ζ32ζ86ζ3ζ82ζ3ζ86ζ32ζ8ζ32ζ8ζ3ζ85ζ3ζ87ζ32ζ87ζ3ζ85ζ32ζ83ζ32ζ83ζ3    complex faithful
ρ213-3-3+3-3/2-3-3-3/200i-i3+3-3/23-3-3/200ζ87ζ8ζ85ζ83ζ82ζ32ζ86ζ3ζ82ζ3ζ86ζ32ζ85ζ32ζ85ζ3ζ8ζ3ζ83ζ32ζ83ζ3ζ8ζ32ζ87ζ32ζ87ζ3    complex faithful
ρ223-3-3-3-3/2-3+3-3/200i-i3-3-3/23+3-3/200ζ83ζ85ζ8ζ87ζ82ζ3ζ86ζ32ζ82ζ32ζ86ζ3ζ8ζ3ζ8ζ32ζ85ζ32ζ87ζ3ζ87ζ32ζ85ζ3ζ83ζ3ζ83ζ32    complex faithful
ρ233-3-3+3-3/2-3-3-3/200-ii3+3-3/23-3-3/200ζ8ζ87ζ83ζ85ζ86ζ32ζ82ζ3ζ86ζ3ζ82ζ32ζ83ζ32ζ83ζ3ζ87ζ3ζ85ζ32ζ85ζ3ζ87ζ32ζ8ζ32ζ8ζ3    complex faithful
ρ243-3-3-3-3/2-3+3-3/200-ii3-3-3/23+3-3/200ζ8ζ87ζ83ζ85ζ86ζ3ζ82ζ32ζ86ζ32ζ82ζ3ζ83ζ3ζ83ζ32ζ87ζ32ζ85ζ3ζ85ζ32ζ87ζ3ζ8ζ3ζ8ζ32    complex faithful
ρ2544441-20044-210000000000000000    orthogonal lifted from C32⋊C4
ρ264444-2100441-20000000000000000    orthogonal lifted from C32⋊C4
ρ274-444-2100-4-4-120000000000000000    symplectic lifted from C322C8, Schur index 2
ρ284-4441-200-4-42-10000000000000000    symplectic lifted from C322C8, Schur index 2

Smallest permutation representation of He32C8
On 72 points
Generators in S72
(1 68 11)(2 19 45)(3 51 20)(4 14 58)(5 72 15)(6 23 41)(7 55 24)(8 10 62)(9 61 29)(12 35 69)(13 57 25)(16 39 65)(17 33 56)(18 44 31)(21 37 52)(22 48 27)(26 47 71)(28 60 54)(30 43 67)(32 64 50)(34 63 49)(36 46 70)(38 59 53)(40 42 66)
(1 34 31)(2 35 32)(3 36 25)(4 37 26)(5 38 27)(6 39 28)(7 40 29)(8 33 30)(9 55 42)(10 56 43)(11 49 44)(12 50 45)(13 51 46)(14 52 47)(15 53 48)(16 54 41)(17 67 62)(18 68 63)(19 69 64)(20 70 57)(21 71 58)(22 72 59)(23 65 60)(24 66 61)
(2 19 12)(4 14 21)(6 23 16)(8 10 17)(9 55 42)(11 44 49)(13 51 46)(15 48 53)(18 68 63)(20 57 70)(22 72 59)(24 61 66)(26 47 58)(28 60 41)(30 43 62)(32 64 45)(33 56 67)(35 69 50)(37 52 71)(39 65 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)

G:=sub<Sym(72)| (1,68,11)(2,19,45)(3,51,20)(4,14,58)(5,72,15)(6,23,41)(7,55,24)(8,10,62)(9,61,29)(12,35,69)(13,57,25)(16,39,65)(17,33,56)(18,44,31)(21,37,52)(22,48,27)(26,47,71)(28,60,54)(30,43,67)(32,64,50)(34,63,49)(36,46,70)(38,59,53)(40,42,66), (1,34,31)(2,35,32)(3,36,25)(4,37,26)(5,38,27)(6,39,28)(7,40,29)(8,33,30)(9,55,42)(10,56,43)(11,49,44)(12,50,45)(13,51,46)(14,52,47)(15,53,48)(16,54,41)(17,67,62)(18,68,63)(19,69,64)(20,70,57)(21,71,58)(22,72,59)(23,65,60)(24,66,61), (2,19,12)(4,14,21)(6,23,16)(8,10,17)(9,55,42)(11,44,49)(13,51,46)(15,48,53)(18,68,63)(20,57,70)(22,72,59)(24,61,66)(26,47,58)(28,60,41)(30,43,62)(32,64,45)(33,56,67)(35,69,50)(37,52,71)(39,65,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;

G:=Group( (1,68,11)(2,19,45)(3,51,20)(4,14,58)(5,72,15)(6,23,41)(7,55,24)(8,10,62)(9,61,29)(12,35,69)(13,57,25)(16,39,65)(17,33,56)(18,44,31)(21,37,52)(22,48,27)(26,47,71)(28,60,54)(30,43,67)(32,64,50)(34,63,49)(36,46,70)(38,59,53)(40,42,66), (1,34,31)(2,35,32)(3,36,25)(4,37,26)(5,38,27)(6,39,28)(7,40,29)(8,33,30)(9,55,42)(10,56,43)(11,49,44)(12,50,45)(13,51,46)(14,52,47)(15,53,48)(16,54,41)(17,67,62)(18,68,63)(19,69,64)(20,70,57)(21,71,58)(22,72,59)(23,65,60)(24,66,61), (2,19,12)(4,14,21)(6,23,16)(8,10,17)(9,55,42)(11,44,49)(13,51,46)(15,48,53)(18,68,63)(20,57,70)(22,72,59)(24,61,66)(26,47,58)(28,60,41)(30,43,62)(32,64,45)(33,56,67)(35,69,50)(37,52,71)(39,65,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );

G=PermutationGroup([[(1,68,11),(2,19,45),(3,51,20),(4,14,58),(5,72,15),(6,23,41),(7,55,24),(8,10,62),(9,61,29),(12,35,69),(13,57,25),(16,39,65),(17,33,56),(18,44,31),(21,37,52),(22,48,27),(26,47,71),(28,60,54),(30,43,67),(32,64,50),(34,63,49),(36,46,70),(38,59,53),(40,42,66)], [(1,34,31),(2,35,32),(3,36,25),(4,37,26),(5,38,27),(6,39,28),(7,40,29),(8,33,30),(9,55,42),(10,56,43),(11,49,44),(12,50,45),(13,51,46),(14,52,47),(15,53,48),(16,54,41),(17,67,62),(18,68,63),(19,69,64),(20,70,57),(21,71,58),(22,72,59),(23,65,60),(24,66,61)], [(2,19,12),(4,14,21),(6,23,16),(8,10,17),(9,55,42),(11,44,49),(13,51,46),(15,48,53),(18,68,63),(20,57,70),(22,72,59),(24,61,66),(26,47,58),(28,60,41),(30,43,62),(32,64,45),(33,56,67),(35,69,50),(37,52,71),(39,65,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])

He32C8 is a maximal subgroup of   He3⋊C16  He32SD16  He3⋊D8  He3⋊Q16  He32(C2×C8)  He31M4(2)  He34M4(2)
He32C8 is a maximal quotient of   He32C16

Matrix representation of He32C8 in GL3(𝔽73) generated by

010
001
100
,
6400
0640
0064
,
100
080
0064
,
881
818
6411
G:=sub<GL(3,GF(73))| [0,0,1,1,0,0,0,1,0],[64,0,0,0,64,0,0,0,64],[1,0,0,0,8,0,0,0,64],[8,8,64,8,1,1,1,8,1] >;

He32C8 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes_2C_8
% in TeX

G:=Group("He3:2C8");
// GroupNames label

G:=SmallGroup(216,25);
// by ID

G=gap.SmallGroup(216,25);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,3,-3,12,31,1347,201,1924,1810,382]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=d^8=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

Export

Subgroup lattice of He32C8 in TeX
Character table of He32C8 in TeX

׿
×
𝔽