Aliases: He3⋊2C8, C2.(He3⋊C4), (C2×He3).C4, C6.2(C32⋊C4), C3.(C32⋊2C8), He3⋊3C4.1C2, SmallGroup(216,25)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — He3 — C2×He3 — He3⋊3C4 — He3⋊2C8 |
He3 — He3⋊2C8 |
Generators and relations for He3⋊2C8
G = < a,b,c,d | a3=b3=c3=d8=1, ab=ba, cac-1=ab-1, dad-1=abc, bc=cb, bd=db, dcd-1=ac-1 >
Character table of He3⋊2C8
class | 1 | 2 | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 1 | 1 | 12 | 12 | 9 | 9 | 1 | 1 | 12 | 12 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | i | i | i | -i | -i | i | -i | -i | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | -i | -i | -i | i | i | -i | i | i | linear of order 4 |
ρ5 | 1 | -1 | 1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | ζ85 | ζ83 | ζ87 | ζ8 | i | -i | i | -i | ζ87 | ζ87 | ζ83 | ζ8 | ζ8 | ζ83 | ζ85 | ζ85 | linear of order 8 |
ρ6 | 1 | -1 | 1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | ζ87 | ζ8 | ζ85 | ζ83 | -i | i | -i | i | ζ85 | ζ85 | ζ8 | ζ83 | ζ83 | ζ8 | ζ87 | ζ87 | linear of order 8 |
ρ7 | 1 | -1 | 1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | ζ8 | ζ87 | ζ83 | ζ85 | i | -i | i | -i | ζ83 | ζ83 | ζ87 | ζ85 | ζ85 | ζ87 | ζ8 | ζ8 | linear of order 8 |
ρ8 | 1 | -1 | 1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | ζ83 | ζ85 | ζ8 | ζ87 | -i | i | -i | i | ζ8 | ζ8 | ζ85 | ζ87 | ζ87 | ζ85 | ζ83 | ζ83 | linear of order 8 |
ρ9 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -1 | -1 | -1 | -1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | complex lifted from He3⋊C4 |
ρ10 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 1 | 1 | 1 | 1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | complex lifted from He3⋊C4 |
ρ11 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -1 | -1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 1 | 1 | 1 | 1 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | complex lifted from He3⋊C4 |
ρ12 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -1 | -1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -1 | -1 | -1 | -1 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | complex lifted from He3⋊C4 |
ρ13 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | i | -i | -i | i | ζ3 | ζ32 | ζ32 | ζ3 | ζ43ζ3 | ζ43ζ32 | ζ43ζ32 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ32 | complex lifted from He3⋊C4 |
ρ14 | 3 | 3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | 1 | 1 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -i | i | i | -i | ζ3 | ζ32 | ζ32 | ζ3 | ζ4ζ3 | ζ4ζ32 | ζ4ζ32 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ32 | complex lifted from He3⋊C4 |
ρ15 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | i | -i | -i | i | ζ32 | ζ3 | ζ3 | ζ32 | ζ43ζ32 | ζ43ζ3 | ζ43ζ3 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ3 | complex lifted from He3⋊C4 |
ρ16 | 3 | 3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | 1 | 1 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -i | i | i | -i | ζ32 | ζ3 | ζ3 | ζ32 | ζ4ζ32 | ζ4ζ3 | ζ4ζ3 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ3 | complex lifted from He3⋊C4 |
ρ17 | 3 | -3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -i | i | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | ζ85 | ζ83 | ζ87 | ζ8 | ζ86ζ32 | ζ82ζ3 | ζ86ζ3 | ζ82ζ32 | ζ87ζ32 | ζ87ζ3 | ζ83ζ3 | ζ8ζ32 | ζ8ζ3 | ζ83ζ32 | ζ85ζ32 | ζ85ζ3 | complex faithful |
ρ18 | 3 | -3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -i | i | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | ζ85 | ζ83 | ζ87 | ζ8 | ζ86ζ3 | ζ82ζ32 | ζ86ζ32 | ζ82ζ3 | ζ87ζ3 | ζ87ζ32 | ζ83ζ32 | ζ8ζ3 | ζ8ζ32 | ζ83ζ3 | ζ85ζ3 | ζ85ζ32 | complex faithful |
ρ19 | 3 | -3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | i | -i | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | ζ87 | ζ8 | ζ85 | ζ83 | ζ82ζ3 | ζ86ζ32 | ζ82ζ32 | ζ86ζ3 | ζ85ζ3 | ζ85ζ32 | ζ8ζ32 | ζ83ζ3 | ζ83ζ32 | ζ8ζ3 | ζ87ζ3 | ζ87ζ32 | complex faithful |
ρ20 | 3 | -3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | i | -i | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | ζ83 | ζ85 | ζ8 | ζ87 | ζ82ζ32 | ζ86ζ3 | ζ82ζ3 | ζ86ζ32 | ζ8ζ32 | ζ8ζ3 | ζ85ζ3 | ζ87ζ32 | ζ87ζ3 | ζ85ζ32 | ζ83ζ32 | ζ83ζ3 | complex faithful |
ρ21 | 3 | -3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | i | -i | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | ζ87 | ζ8 | ζ85 | ζ83 | ζ82ζ32 | ζ86ζ3 | ζ82ζ3 | ζ86ζ32 | ζ85ζ32 | ζ85ζ3 | ζ8ζ3 | ζ83ζ32 | ζ83ζ3 | ζ8ζ32 | ζ87ζ32 | ζ87ζ3 | complex faithful |
ρ22 | 3 | -3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | i | -i | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | ζ83 | ζ85 | ζ8 | ζ87 | ζ82ζ3 | ζ86ζ32 | ζ82ζ32 | ζ86ζ3 | ζ8ζ3 | ζ8ζ32 | ζ85ζ32 | ζ87ζ3 | ζ87ζ32 | ζ85ζ3 | ζ83ζ3 | ζ83ζ32 | complex faithful |
ρ23 | 3 | -3 | -3+3√-3/2 | -3-3√-3/2 | 0 | 0 | -i | i | 3+3√-3/2 | 3-3√-3/2 | 0 | 0 | ζ8 | ζ87 | ζ83 | ζ85 | ζ86ζ32 | ζ82ζ3 | ζ86ζ3 | ζ82ζ32 | ζ83ζ32 | ζ83ζ3 | ζ87ζ3 | ζ85ζ32 | ζ85ζ3 | ζ87ζ32 | ζ8ζ32 | ζ8ζ3 | complex faithful |
ρ24 | 3 | -3 | -3-3√-3/2 | -3+3√-3/2 | 0 | 0 | -i | i | 3-3√-3/2 | 3+3√-3/2 | 0 | 0 | ζ8 | ζ87 | ζ83 | ζ85 | ζ86ζ3 | ζ82ζ32 | ζ86ζ32 | ζ82ζ3 | ζ83ζ3 | ζ83ζ32 | ζ87ζ32 | ζ85ζ3 | ζ85ζ32 | ζ87ζ3 | ζ8ζ3 | ζ8ζ32 | complex faithful |
ρ25 | 4 | 4 | 4 | 4 | 1 | -2 | 0 | 0 | 4 | 4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ26 | 4 | 4 | 4 | 4 | -2 | 1 | 0 | 0 | 4 | 4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ27 | 4 | -4 | 4 | 4 | -2 | 1 | 0 | 0 | -4 | -4 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
ρ28 | 4 | -4 | 4 | 4 | 1 | -2 | 0 | 0 | -4 | -4 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C32⋊2C8, Schur index 2 |
(1 68 11)(2 19 45)(3 51 20)(4 14 58)(5 72 15)(6 23 41)(7 55 24)(8 10 62)(9 61 29)(12 35 69)(13 57 25)(16 39 65)(17 33 56)(18 44 31)(21 37 52)(22 48 27)(26 47 71)(28 60 54)(30 43 67)(32 64 50)(34 63 49)(36 46 70)(38 59 53)(40 42 66)
(1 34 31)(2 35 32)(3 36 25)(4 37 26)(5 38 27)(6 39 28)(7 40 29)(8 33 30)(9 55 42)(10 56 43)(11 49 44)(12 50 45)(13 51 46)(14 52 47)(15 53 48)(16 54 41)(17 67 62)(18 68 63)(19 69 64)(20 70 57)(21 71 58)(22 72 59)(23 65 60)(24 66 61)
(2 19 12)(4 14 21)(6 23 16)(8 10 17)(9 55 42)(11 44 49)(13 51 46)(15 48 53)(18 68 63)(20 57 70)(22 72 59)(24 61 66)(26 47 58)(28 60 41)(30 43 62)(32 64 45)(33 56 67)(35 69 50)(37 52 71)(39 65 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,68,11)(2,19,45)(3,51,20)(4,14,58)(5,72,15)(6,23,41)(7,55,24)(8,10,62)(9,61,29)(12,35,69)(13,57,25)(16,39,65)(17,33,56)(18,44,31)(21,37,52)(22,48,27)(26,47,71)(28,60,54)(30,43,67)(32,64,50)(34,63,49)(36,46,70)(38,59,53)(40,42,66), (1,34,31)(2,35,32)(3,36,25)(4,37,26)(5,38,27)(6,39,28)(7,40,29)(8,33,30)(9,55,42)(10,56,43)(11,49,44)(12,50,45)(13,51,46)(14,52,47)(15,53,48)(16,54,41)(17,67,62)(18,68,63)(19,69,64)(20,70,57)(21,71,58)(22,72,59)(23,65,60)(24,66,61), (2,19,12)(4,14,21)(6,23,16)(8,10,17)(9,55,42)(11,44,49)(13,51,46)(15,48,53)(18,68,63)(20,57,70)(22,72,59)(24,61,66)(26,47,58)(28,60,41)(30,43,62)(32,64,45)(33,56,67)(35,69,50)(37,52,71)(39,65,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;
G:=Group( (1,68,11)(2,19,45)(3,51,20)(4,14,58)(5,72,15)(6,23,41)(7,55,24)(8,10,62)(9,61,29)(12,35,69)(13,57,25)(16,39,65)(17,33,56)(18,44,31)(21,37,52)(22,48,27)(26,47,71)(28,60,54)(30,43,67)(32,64,50)(34,63,49)(36,46,70)(38,59,53)(40,42,66), (1,34,31)(2,35,32)(3,36,25)(4,37,26)(5,38,27)(6,39,28)(7,40,29)(8,33,30)(9,55,42)(10,56,43)(11,49,44)(12,50,45)(13,51,46)(14,52,47)(15,53,48)(16,54,41)(17,67,62)(18,68,63)(19,69,64)(20,70,57)(21,71,58)(22,72,59)(23,65,60)(24,66,61), (2,19,12)(4,14,21)(6,23,16)(8,10,17)(9,55,42)(11,44,49)(13,51,46)(15,48,53)(18,68,63)(20,57,70)(22,72,59)(24,61,66)(26,47,58)(28,60,41)(30,43,62)(32,64,45)(33,56,67)(35,69,50)(37,52,71)(39,65,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,68,11),(2,19,45),(3,51,20),(4,14,58),(5,72,15),(6,23,41),(7,55,24),(8,10,62),(9,61,29),(12,35,69),(13,57,25),(16,39,65),(17,33,56),(18,44,31),(21,37,52),(22,48,27),(26,47,71),(28,60,54),(30,43,67),(32,64,50),(34,63,49),(36,46,70),(38,59,53),(40,42,66)], [(1,34,31),(2,35,32),(3,36,25),(4,37,26),(5,38,27),(6,39,28),(7,40,29),(8,33,30),(9,55,42),(10,56,43),(11,49,44),(12,50,45),(13,51,46),(14,52,47),(15,53,48),(16,54,41),(17,67,62),(18,68,63),(19,69,64),(20,70,57),(21,71,58),(22,72,59),(23,65,60),(24,66,61)], [(2,19,12),(4,14,21),(6,23,16),(8,10,17),(9,55,42),(11,44,49),(13,51,46),(15,48,53),(18,68,63),(20,57,70),(22,72,59),(24,61,66),(26,47,58),(28,60,41),(30,43,62),(32,64,45),(33,56,67),(35,69,50),(37,52,71),(39,65,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])
He3⋊2C8 is a maximal subgroup of
He3⋊C16 He3⋊2SD16 He3⋊D8 He3⋊Q16 He3⋊2(C2×C8) He3⋊1M4(2) He3⋊4M4(2)
He3⋊2C8 is a maximal quotient of He3⋊2C16
Matrix representation of He3⋊2C8 ►in GL3(𝔽73) generated by
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
64 | 0 | 0 |
0 | 64 | 0 |
0 | 0 | 64 |
1 | 0 | 0 |
0 | 8 | 0 |
0 | 0 | 64 |
8 | 8 | 1 |
8 | 1 | 8 |
64 | 1 | 1 |
G:=sub<GL(3,GF(73))| [0,0,1,1,0,0,0,1,0],[64,0,0,0,64,0,0,0,64],[1,0,0,0,8,0,0,0,64],[8,8,64,8,1,1,1,8,1] >;
He3⋊2C8 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_2C_8
% in TeX
G:=Group("He3:2C8");
// GroupNames label
G:=SmallGroup(216,25);
// by ID
G=gap.SmallGroup(216,25);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-3,12,31,1347,201,1924,1810,382]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^3=d^8=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations
Export
Subgroup lattice of He3⋊2C8 in TeX
Character table of He3⋊2C8 in TeX