Copied to
clipboard

G = He3⋊Q16order 432 = 24·33

The semidirect product of He3 and Q16 acting via Q16/C2=D4

non-abelian, soluble

Aliases: He3⋊Q16, C6.3S3≀C2, He32Q8.C2, C3.(C32⋊Q16), C2.5(He3⋊D4), (C2×He3).3D4, He32C8.1C2, He33C4.3C22, SmallGroup(432,236)

Series: Derived Chief Lower central Upper central

C1C3He3He33C4 — He3⋊Q16
C1C3He3C2×He3He33C4He32Q8 — He3⋊Q16
He3C2×He3He33C4 — He3⋊Q16
C1C2

Generators and relations for He3⋊Q16
 G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, cac-1=dcd-1=ece-1=ab-1, dad-1=bc-1, eae-1=b-1c, bc=cb, bd=db, ebe-1=b-1, ede-1=d-1 >

6C3
6C3
9C4
18C4
18C4
6C6
6C6
2C32
2C32
9C8
27Q8
27Q8
6Dic3
6Dic3
6Dic3
6Dic3
9C12
18C12
18Dic3
18Dic3
18C12
2C3×C6
2C3×C6
27Q16
9C24
9Dic6
9Dic6
18Dic6
18Dic6
2C3⋊Dic3
2C3⋊Dic3
6C3×Dic3
6C3×Dic3
6C3×Dic3
6C3×Dic3
9Dic12
6C322Q8
6C322Q8
2C32⋊C12
2C32⋊C12

Character table of He3⋊Q16

 class 123A3B3C4A4B4C6A6B6C8A8B12A12B12C12D12E12F24A24B24C24D
 size 112121218363621212181818183636363618181818
ρ111111111111111111111111    trivial
ρ21111111-1111-1-111-1-111-1-1-1-1    linear of order 2
ρ3111111-11111-1-11111-1-1-1-1-1-1    linear of order 2
ρ4111111-1-11111111-1-1-1-11111    linear of order 2
ρ522222-20022200-2-200000000    orthogonal lifted from D4
ρ62-2222000-2-2-22-2000000-2-222    symplectic lifted from Q16, Schur index 2
ρ72-2222000-2-2-2-2200000022-2-2    symplectic lifted from Q16, Schur index 2
ρ84441-20204-21000000-1-10000    orthogonal lifted from S3≀C2
ρ9444-2100241-20000-1-1000000    orthogonal lifted from S3≀C2
ρ10444-2100-241-2000011000000    orthogonal lifted from S3≀C2
ρ114441-20-204-21000000110000    orthogonal lifted from S3≀C2
ρ124-441-2000-42-1000000-330000    symplectic lifted from C32⋊Q16, Schur index 2
ρ134-44-21000-4-120000-33000000    symplectic lifted from C32⋊Q16, Schur index 2
ρ144-44-21000-4-1200003-3000000    symplectic lifted from C32⋊Q16, Schur index 2
ρ154-441-2000-42-10000003-30000    symplectic lifted from C32⋊Q16, Schur index 2
ρ1666-300-200-30022110000-1-1-1-1    orthogonal lifted from He3⋊D4
ρ1766-300-200-300-2-21100001111    orthogonal lifted from He3⋊D4
ρ1866-300200-30000-1-100003-3-33    orthogonal lifted from He3⋊D4
ρ1966-300200-30000-1-10000-333-3    orthogonal lifted from He3⋊D4
ρ206-6-300000300-223-30000ζ87ζ385ζ385ζ83ζ3838ζ3ζ83ζ328ζ328ζ87ζ328785ζ32    symplectic faithful, Schur index 2
ρ216-6-3000003002-23-30000ζ87ζ328785ζ32ζ83ζ328ζ328ζ83ζ3838ζ3ζ87ζ385ζ385    symplectic faithful, Schur index 2
ρ226-6-3000003002-2-330000ζ83ζ328ζ328ζ87ζ328785ζ32ζ87ζ385ζ385ζ83ζ3838ζ3    symplectic faithful, Schur index 2
ρ236-6-300000300-22-330000ζ83ζ3838ζ3ζ87ζ385ζ385ζ87ζ328785ζ32ζ83ζ328ζ328    symplectic faithful, Schur index 2

Smallest permutation representation of He3⋊Q16
On 144 points
Generators in S144
(1 122 43)(2 49 132)(3 50 92)(4 93 46)(5 126 47)(6 53 136)(7 54 96)(8 89 42)(9 57 137)(10 138 71)(11 104 72)(12 60 36)(13 61 141)(14 142 67)(15 100 68)(16 64 40)(17 121 55)(18 131 56)(19 120 91)(20 113 124)(21 125 51)(22 135 52)(23 116 95)(24 117 128)(25 90 119)(26 44 123)(27 45 133)(28 134 114)(29 94 115)(30 48 127)(31 41 129)(32 130 118)(33 77 70)(34 83 78)(35 59 106)(37 73 66)(38 87 74)(39 63 110)(58 105 103)(62 109 99)(65 97 80)(69 101 76)(75 143 88)(79 139 84)(81 144 111)(82 102 112)(85 140 107)(86 98 108)
(1 25 18)(2 26 19)(3 27 20)(4 28 21)(5 29 22)(6 30 23)(7 31 24)(8 32 17)(9 77 112)(10 78 105)(11 79 106)(12 80 107)(13 73 108)(14 74 109)(15 75 110)(16 76 111)(33 102 137)(34 103 138)(35 104 139)(36 97 140)(37 98 141)(38 99 142)(39 100 143)(40 101 144)(41 117 54)(42 118 55)(43 119 56)(44 120 49)(45 113 50)(46 114 51)(47 115 52)(48 116 53)(57 70 82)(58 71 83)(59 72 84)(60 65 85)(61 66 86)(62 67 87)(63 68 88)(64 69 81)(89 130 121)(90 131 122)(91 132 123)(92 133 124)(93 134 125)(94 135 126)(95 136 127)(96 129 128)
(1 122 119)(2 132 120)(3 113 124)(4 114 134)(5 126 115)(6 136 116)(7 117 128)(8 118 130)(9 82 102)(10 83 34)(11 104 84)(12 36 85)(13 86 98)(14 87 38)(15 100 88)(16 40 81)(17 42 89)(18 131 43)(19 91 44)(20 45 133)(21 46 93)(22 135 47)(23 95 48)(24 41 129)(25 90 56)(26 123 49)(27 50 92)(28 51 125)(29 94 52)(30 127 53)(31 54 96)(32 55 121)(33 112 70)(35 72 106)(37 108 66)(39 68 110)(57 137 77)(58 103 78)(59 79 139)(60 80 97)(61 141 73)(62 99 74)(63 75 143)(64 76 101)(65 107 140)(67 142 109)(69 111 144)(71 138 105)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 61 5 57)(2 60 6 64)(3 59 7 63)(4 58 8 62)(9 56 13 52)(10 55 14 51)(11 54 15 50)(12 53 16 49)(17 67 21 71)(18 66 22 70)(19 65 23 69)(20 72 24 68)(25 86 29 82)(26 85 30 81)(27 84 31 88)(28 83 32 87)(33 90 37 94)(34 89 38 93)(35 96 39 92)(36 95 40 91)(41 110 45 106)(42 109 46 105)(43 108 47 112)(44 107 48 111)(73 115 77 119)(74 114 78 118)(75 113 79 117)(76 120 80 116)(97 127 101 123)(98 126 102 122)(99 125 103 121)(100 124 104 128)(129 143 133 139)(130 142 134 138)(131 141 135 137)(132 140 136 144)

G:=sub<Sym(144)| (1,122,43)(2,49,132)(3,50,92)(4,93,46)(5,126,47)(6,53,136)(7,54,96)(8,89,42)(9,57,137)(10,138,71)(11,104,72)(12,60,36)(13,61,141)(14,142,67)(15,100,68)(16,64,40)(17,121,55)(18,131,56)(19,120,91)(20,113,124)(21,125,51)(22,135,52)(23,116,95)(24,117,128)(25,90,119)(26,44,123)(27,45,133)(28,134,114)(29,94,115)(30,48,127)(31,41,129)(32,130,118)(33,77,70)(34,83,78)(35,59,106)(37,73,66)(38,87,74)(39,63,110)(58,105,103)(62,109,99)(65,97,80)(69,101,76)(75,143,88)(79,139,84)(81,144,111)(82,102,112)(85,140,107)(86,98,108), (1,25,18)(2,26,19)(3,27,20)(4,28,21)(5,29,22)(6,30,23)(7,31,24)(8,32,17)(9,77,112)(10,78,105)(11,79,106)(12,80,107)(13,73,108)(14,74,109)(15,75,110)(16,76,111)(33,102,137)(34,103,138)(35,104,139)(36,97,140)(37,98,141)(38,99,142)(39,100,143)(40,101,144)(41,117,54)(42,118,55)(43,119,56)(44,120,49)(45,113,50)(46,114,51)(47,115,52)(48,116,53)(57,70,82)(58,71,83)(59,72,84)(60,65,85)(61,66,86)(62,67,87)(63,68,88)(64,69,81)(89,130,121)(90,131,122)(91,132,123)(92,133,124)(93,134,125)(94,135,126)(95,136,127)(96,129,128), (1,122,119)(2,132,120)(3,113,124)(4,114,134)(5,126,115)(6,136,116)(7,117,128)(8,118,130)(9,82,102)(10,83,34)(11,104,84)(12,36,85)(13,86,98)(14,87,38)(15,100,88)(16,40,81)(17,42,89)(18,131,43)(19,91,44)(20,45,133)(21,46,93)(22,135,47)(23,95,48)(24,41,129)(25,90,56)(26,123,49)(27,50,92)(28,51,125)(29,94,52)(30,127,53)(31,54,96)(32,55,121)(33,112,70)(35,72,106)(37,108,66)(39,68,110)(57,137,77)(58,103,78)(59,79,139)(60,80,97)(61,141,73)(62,99,74)(63,75,143)(64,76,101)(65,107,140)(67,142,109)(69,111,144)(71,138,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,67,21,71)(18,66,22,70)(19,65,23,69)(20,72,24,68)(25,86,29,82)(26,85,30,81)(27,84,31,88)(28,83,32,87)(33,90,37,94)(34,89,38,93)(35,96,39,92)(36,95,40,91)(41,110,45,106)(42,109,46,105)(43,108,47,112)(44,107,48,111)(73,115,77,119)(74,114,78,118)(75,113,79,117)(76,120,80,116)(97,127,101,123)(98,126,102,122)(99,125,103,121)(100,124,104,128)(129,143,133,139)(130,142,134,138)(131,141,135,137)(132,140,136,144)>;

G:=Group( (1,122,43)(2,49,132)(3,50,92)(4,93,46)(5,126,47)(6,53,136)(7,54,96)(8,89,42)(9,57,137)(10,138,71)(11,104,72)(12,60,36)(13,61,141)(14,142,67)(15,100,68)(16,64,40)(17,121,55)(18,131,56)(19,120,91)(20,113,124)(21,125,51)(22,135,52)(23,116,95)(24,117,128)(25,90,119)(26,44,123)(27,45,133)(28,134,114)(29,94,115)(30,48,127)(31,41,129)(32,130,118)(33,77,70)(34,83,78)(35,59,106)(37,73,66)(38,87,74)(39,63,110)(58,105,103)(62,109,99)(65,97,80)(69,101,76)(75,143,88)(79,139,84)(81,144,111)(82,102,112)(85,140,107)(86,98,108), (1,25,18)(2,26,19)(3,27,20)(4,28,21)(5,29,22)(6,30,23)(7,31,24)(8,32,17)(9,77,112)(10,78,105)(11,79,106)(12,80,107)(13,73,108)(14,74,109)(15,75,110)(16,76,111)(33,102,137)(34,103,138)(35,104,139)(36,97,140)(37,98,141)(38,99,142)(39,100,143)(40,101,144)(41,117,54)(42,118,55)(43,119,56)(44,120,49)(45,113,50)(46,114,51)(47,115,52)(48,116,53)(57,70,82)(58,71,83)(59,72,84)(60,65,85)(61,66,86)(62,67,87)(63,68,88)(64,69,81)(89,130,121)(90,131,122)(91,132,123)(92,133,124)(93,134,125)(94,135,126)(95,136,127)(96,129,128), (1,122,119)(2,132,120)(3,113,124)(4,114,134)(5,126,115)(6,136,116)(7,117,128)(8,118,130)(9,82,102)(10,83,34)(11,104,84)(12,36,85)(13,86,98)(14,87,38)(15,100,88)(16,40,81)(17,42,89)(18,131,43)(19,91,44)(20,45,133)(21,46,93)(22,135,47)(23,95,48)(24,41,129)(25,90,56)(26,123,49)(27,50,92)(28,51,125)(29,94,52)(30,127,53)(31,54,96)(32,55,121)(33,112,70)(35,72,106)(37,108,66)(39,68,110)(57,137,77)(58,103,78)(59,79,139)(60,80,97)(61,141,73)(62,99,74)(63,75,143)(64,76,101)(65,107,140)(67,142,109)(69,111,144)(71,138,105), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,56,13,52)(10,55,14,51)(11,54,15,50)(12,53,16,49)(17,67,21,71)(18,66,22,70)(19,65,23,69)(20,72,24,68)(25,86,29,82)(26,85,30,81)(27,84,31,88)(28,83,32,87)(33,90,37,94)(34,89,38,93)(35,96,39,92)(36,95,40,91)(41,110,45,106)(42,109,46,105)(43,108,47,112)(44,107,48,111)(73,115,77,119)(74,114,78,118)(75,113,79,117)(76,120,80,116)(97,127,101,123)(98,126,102,122)(99,125,103,121)(100,124,104,128)(129,143,133,139)(130,142,134,138)(131,141,135,137)(132,140,136,144) );

G=PermutationGroup([[(1,122,43),(2,49,132),(3,50,92),(4,93,46),(5,126,47),(6,53,136),(7,54,96),(8,89,42),(9,57,137),(10,138,71),(11,104,72),(12,60,36),(13,61,141),(14,142,67),(15,100,68),(16,64,40),(17,121,55),(18,131,56),(19,120,91),(20,113,124),(21,125,51),(22,135,52),(23,116,95),(24,117,128),(25,90,119),(26,44,123),(27,45,133),(28,134,114),(29,94,115),(30,48,127),(31,41,129),(32,130,118),(33,77,70),(34,83,78),(35,59,106),(37,73,66),(38,87,74),(39,63,110),(58,105,103),(62,109,99),(65,97,80),(69,101,76),(75,143,88),(79,139,84),(81,144,111),(82,102,112),(85,140,107),(86,98,108)], [(1,25,18),(2,26,19),(3,27,20),(4,28,21),(5,29,22),(6,30,23),(7,31,24),(8,32,17),(9,77,112),(10,78,105),(11,79,106),(12,80,107),(13,73,108),(14,74,109),(15,75,110),(16,76,111),(33,102,137),(34,103,138),(35,104,139),(36,97,140),(37,98,141),(38,99,142),(39,100,143),(40,101,144),(41,117,54),(42,118,55),(43,119,56),(44,120,49),(45,113,50),(46,114,51),(47,115,52),(48,116,53),(57,70,82),(58,71,83),(59,72,84),(60,65,85),(61,66,86),(62,67,87),(63,68,88),(64,69,81),(89,130,121),(90,131,122),(91,132,123),(92,133,124),(93,134,125),(94,135,126),(95,136,127),(96,129,128)], [(1,122,119),(2,132,120),(3,113,124),(4,114,134),(5,126,115),(6,136,116),(7,117,128),(8,118,130),(9,82,102),(10,83,34),(11,104,84),(12,36,85),(13,86,98),(14,87,38),(15,100,88),(16,40,81),(17,42,89),(18,131,43),(19,91,44),(20,45,133),(21,46,93),(22,135,47),(23,95,48),(24,41,129),(25,90,56),(26,123,49),(27,50,92),(28,51,125),(29,94,52),(30,127,53),(31,54,96),(32,55,121),(33,112,70),(35,72,106),(37,108,66),(39,68,110),(57,137,77),(58,103,78),(59,79,139),(60,80,97),(61,141,73),(62,99,74),(63,75,143),(64,76,101),(65,107,140),(67,142,109),(69,111,144),(71,138,105)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,61,5,57),(2,60,6,64),(3,59,7,63),(4,58,8,62),(9,56,13,52),(10,55,14,51),(11,54,15,50),(12,53,16,49),(17,67,21,71),(18,66,22,70),(19,65,23,69),(20,72,24,68),(25,86,29,82),(26,85,30,81),(27,84,31,88),(28,83,32,87),(33,90,37,94),(34,89,38,93),(35,96,39,92),(36,95,40,91),(41,110,45,106),(42,109,46,105),(43,108,47,112),(44,107,48,111),(73,115,77,119),(74,114,78,118),(75,113,79,117),(76,120,80,116),(97,127,101,123),(98,126,102,122),(99,125,103,121),(100,124,104,128),(129,143,133,139),(130,142,134,138),(131,141,135,137),(132,140,136,144)]])

Matrix representation of He3⋊Q16 in GL6(𝔽73)

000100
00727200
000001
00007272
010000
72720000
,
010000
72720000
000100
00727200
000001
00007272
,
001000
000100
00007272
000010
010000
72720000
,
155338583858
203515531553
385815533858
155320351553
155315532035
203520353858
,
61510000
63120000
00615100
00631200
00006312
00002210

G:=sub<GL(6,GF(73))| [0,0,0,0,0,72,0,0,0,0,1,72,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[0,0,0,0,0,72,0,0,0,0,1,72,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0],[15,20,38,15,15,20,53,35,58,53,53,35,38,15,15,20,15,20,58,53,53,35,53,35,38,15,38,15,20,38,58,53,58,53,35,58],[61,63,0,0,0,0,51,12,0,0,0,0,0,0,61,63,0,0,0,0,51,12,0,0,0,0,0,0,63,22,0,0,0,0,12,10] >;

He3⋊Q16 in GAP, Magma, Sage, TeX

{\rm He}_3\rtimes Q_{16}
% in TeX

G:=Group("He3:Q16");
// GroupNames label

G:=SmallGroup(432,236);
// by ID

G=gap.SmallGroup(432,236);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,3,-3,56,85,64,254,135,58,1124,851,298,348,1027,537,14118,7069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,c*a*c^-1=d*c*d^-1=e*c*e^-1=a*b^-1,d*a*d^-1=b*c^-1,e*a*e^-1=b^-1*c,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of He3⋊Q16 in TeX
Character table of He3⋊Q16 in TeX

׿
×
𝔽