# Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C18

Direct product G=N×Q with N=C22 and Q=S3×C18
dρLabelID
S3×C22×C18144S3xC2^2xC18432,557

Semidirect products G=N:Q with N=C22 and Q=S3×C18
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C18) = C18×S4φ: S3×C18/C18S3 ⊆ Aut C22543C2^2:(S3xC18)432,532
C222(S3×C18) = C2×S3×C3.A4φ: S3×C18/S3×C6C3 ⊆ Aut C22366C2^2:2(S3xC18)432,541
C223(S3×C18) = S3×D4×C9φ: S3×C18/S3×C9C2 ⊆ Aut C22724C2^2:3(S3xC18)432,358
C224(S3×C18) = C18×C3⋊D4φ: S3×C18/C3×C18C2 ⊆ Aut C2272C2^2:4(S3xC18)432,375

Non-split extensions G=N.Q with N=C22 and Q=S3×C18
extensionφ:Q→Aut NdρLabelID
C22.1(S3×C18) = C9×D42S3φ: S3×C18/S3×C9C2 ⊆ Aut C22724C2^2.1(S3xC18)432,359
C22.2(S3×C18) = C9×C4○D12φ: S3×C18/C3×C18C2 ⊆ Aut C22722C2^2.2(S3xC18)432,347
C22.3(S3×C18) = Dic3×C36central extension (φ=1)144C2^2.3(S3xC18)432,131
C22.4(S3×C18) = C9×Dic3⋊C4central extension (φ=1)144C2^2.4(S3xC18)432,132
C22.5(S3×C18) = C9×C4⋊Dic3central extension (φ=1)144C2^2.5(S3xC18)432,133
C22.6(S3×C18) = C9×D6⋊C4central extension (φ=1)144C2^2.6(S3xC18)432,135
C22.7(S3×C18) = C9×C6.D4central extension (φ=1)72C2^2.7(S3xC18)432,165
C22.8(S3×C18) = C18×Dic6central extension (φ=1)144C2^2.8(S3xC18)432,341
C22.9(S3×C18) = S3×C2×C36central extension (φ=1)144C2^2.9(S3xC18)432,345
C22.10(S3×C18) = C18×D12central extension (φ=1)144C2^2.10(S3xC18)432,346
C22.11(S3×C18) = Dic3×C2×C18central extension (φ=1)144C2^2.11(S3xC18)432,373

׿
×
𝔽