extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C3×Dic6) = C3×Dic3⋊Dic3 | φ: C3×Dic6/C3×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.1(C3xDic6) | 432,428 |
C6.2(C3×Dic6) = C3×C62.C22 | φ: C3×Dic6/C3×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.2(C3xDic6) | 432,429 |
C6.3(C3×Dic6) = C3×Dic9⋊C4 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.3(C3xDic6) | 432,129 |
C6.4(C3×Dic6) = C3×C4⋊Dic9 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.4(C3xDic6) | 432,130 |
C6.5(C3×Dic6) = C62.19D6 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.5(C3xDic6) | 432,139 |
C6.6(C3×Dic6) = C62.20D6 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.6(C3xDic6) | 432,140 |
C6.7(C3×Dic6) = Dic9⋊C12 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.7(C3xDic6) | 432,145 |
C6.8(C3×Dic6) = C36⋊C12 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.8(C3xDic6) | 432,146 |
C6.9(C3×Dic6) = C6×Dic18 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.9(C3xDic6) | 432,340 |
C6.10(C3×Dic6) = C2×He3⋊3Q8 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.10(C3xDic6) | 432,348 |
C6.11(C3×Dic6) = C2×C36.C6 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.11(C3xDic6) | 432,352 |
C6.12(C3×Dic6) = C3×C6.Dic6 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.12(C3xDic6) | 432,488 |
C6.13(C3×Dic6) = C3×C12⋊Dic3 | φ: C3×Dic6/C3×C12 → C2 ⊆ Aut C6 | 144 | | C6.13(C3xDic6) | 432,489 |
C6.14(C3×Dic6) = C9×Dic3⋊C4 | central extension (φ=1) | 144 | | C6.14(C3xDic6) | 432,132 |
C6.15(C3×Dic6) = C9×C4⋊Dic3 | central extension (φ=1) | 144 | | C6.15(C3xDic6) | 432,133 |
C6.16(C3×Dic6) = C18×Dic6 | central extension (φ=1) | 144 | | C6.16(C3xDic6) | 432,341 |
C6.17(C3×Dic6) = C32×Dic3⋊C4 | central extension (φ=1) | 144 | | C6.17(C3xDic6) | 432,472 |
C6.18(C3×Dic6) = C32×C4⋊Dic3 | central extension (φ=1) | 144 | | C6.18(C3xDic6) | 432,473 |