Extensions 1→N→G→Q→1 with N=C6 and Q=C3×Dic6

Direct product G=N×Q with N=C6 and Q=C3×Dic6
dρLabelID
C3×C6×Dic6144C3xC6xDic6432,700

Semidirect products G=N:Q with N=C6 and Q=C3×Dic6
extensionφ:Q→Aut NdρLabelID
C61(C3×Dic6) = C6×C322Q8φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C648C6:1(C3xDic6)432,657
C62(C3×Dic6) = C6×C324Q8φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6:2(C3xDic6)432,710

Non-split extensions G=N.Q with N=C6 and Q=C3×Dic6
extensionφ:Q→Aut NdρLabelID
C6.1(C3×Dic6) = C3×Dic3⋊Dic3φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C648C6.1(C3xDic6)432,428
C6.2(C3×Dic6) = C3×C62.C22φ: C3×Dic6/C3×Dic3C2 ⊆ Aut C648C6.2(C3xDic6)432,429
C6.3(C3×Dic6) = C3×Dic9⋊C4φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.3(C3xDic6)432,129
C6.4(C3×Dic6) = C3×C4⋊Dic9φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.4(C3xDic6)432,130
C6.5(C3×Dic6) = C62.19D6φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.5(C3xDic6)432,139
C6.6(C3×Dic6) = C62.20D6φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.6(C3xDic6)432,140
C6.7(C3×Dic6) = Dic9⋊C12φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.7(C3xDic6)432,145
C6.8(C3×Dic6) = C36⋊C12φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.8(C3xDic6)432,146
C6.9(C3×Dic6) = C6×Dic18φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.9(C3xDic6)432,340
C6.10(C3×Dic6) = C2×He33Q8φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.10(C3xDic6)432,348
C6.11(C3×Dic6) = C2×C36.C6φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.11(C3xDic6)432,352
C6.12(C3×Dic6) = C3×C6.Dic6φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.12(C3xDic6)432,488
C6.13(C3×Dic6) = C3×C12⋊Dic3φ: C3×Dic6/C3×C12C2 ⊆ Aut C6144C6.13(C3xDic6)432,489
C6.14(C3×Dic6) = C9×Dic3⋊C4central extension (φ=1)144C6.14(C3xDic6)432,132
C6.15(C3×Dic6) = C9×C4⋊Dic3central extension (φ=1)144C6.15(C3xDic6)432,133
C6.16(C3×Dic6) = C18×Dic6central extension (φ=1)144C6.16(C3xDic6)432,341
C6.17(C3×Dic6) = C32×Dic3⋊C4central extension (φ=1)144C6.17(C3xDic6)432,472
C6.18(C3×Dic6) = C32×C4⋊Dic3central extension (φ=1)144C6.18(C3xDic6)432,473

׿
×
𝔽