Copied to
clipboard

G = Dic9⋊C12order 432 = 24·33

The semidirect product of Dic9 and C12 acting via C12/C2=C6

metabelian, supersoluble, monomial

Aliases: Dic9⋊C12, C62.23D6, C9⋊C12⋊C4, Dic9⋊C4⋊C3, (C2×C36).8C6, (C6×C12).2S3, C18.6(C3×D4), C18.1(C3×Q8), C6.18(S3×C12), C18.3(C2×C12), C6.7(C3×Dic6), (C3×C6).7Dic6, (C2×Dic9).1C6, C2.1(Dic9⋊C6), C32.(Dic3⋊C4), C2.1(C36.C6), 3- 1+21(C4⋊C4), (C2×3- 1+2).1Q8, (C2×3- 1+2).6D4, (C22×3- 1+2).3C22, C91(C3×C4⋊C4), C2.4(C4×C9⋊C6), (C2×C9⋊C12).1C2, (C2×C4).1(C9⋊C6), (C2×C18).3(C2×C6), (C2×C12).7(C3×S3), (C3×C6).18(C4×S3), (C2×C6).43(S3×C6), C6.16(C3×C3⋊D4), C22.4(C2×C9⋊C6), C3.3(C3×Dic3⋊C4), (C3×C6).21(C3⋊D4), (C2×C4×3- 1+2).8C2, (C2×3- 1+2).3(C2×C4), SmallGroup(432,145)

Series: Derived Chief Lower central Upper central

C1C18 — Dic9⋊C12
C1C3C9C18C2×C18C22×3- 1+2C2×C9⋊C12 — Dic9⋊C12
C9C18 — Dic9⋊C12
C1C22C2×C4

Generators and relations for Dic9⋊C12
 G = < a,b,c | a18=c12=1, b2=a9, bab-1=a-1, cac-1=a13, cbc-1=a9b >

Subgroups: 262 in 86 conjugacy classes, 40 normal (36 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C2×C4, C9, C9, C32, Dic3, C12, C2×C6, C2×C6, C4⋊C4, C18, C18, C3×C6, C2×Dic3, C2×C12, C2×C12, 3- 1+2, Dic9, Dic9, C36, C2×C18, C2×C18, C3×Dic3, C3×C12, C62, Dic3⋊C4, C3×C4⋊C4, C2×3- 1+2, C2×Dic9, C2×C36, C2×C36, C6×Dic3, C6×C12, C9⋊C12, C9⋊C12, C4×3- 1+2, C22×3- 1+2, Dic9⋊C4, C3×Dic3⋊C4, C2×C9⋊C12, C2×C4×3- 1+2, Dic9⋊C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Q8, C12, D6, C2×C6, C4⋊C4, C3×S3, Dic6, C4×S3, C3⋊D4, C2×C12, C3×D4, C3×Q8, S3×C6, Dic3⋊C4, C3×C4⋊C4, C9⋊C6, C3×Dic6, S3×C12, C3×C3⋊D4, C2×C9⋊C6, C3×Dic3⋊C4, C36.C6, C4×C9⋊C6, Dic9⋊C6, Dic9⋊C12

Smallest permutation representation of Dic9⋊C12
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 82 10 73)(2 81 11 90)(3 80 12 89)(4 79 13 88)(5 78 14 87)(6 77 15 86)(7 76 16 85)(8 75 17 84)(9 74 18 83)(19 92 28 101)(20 91 29 100)(21 108 30 99)(22 107 31 98)(23 106 32 97)(24 105 33 96)(25 104 34 95)(26 103 35 94)(27 102 36 93)(37 120 46 111)(38 119 47 110)(39 118 48 109)(40 117 49 126)(41 116 50 125)(42 115 51 124)(43 114 52 123)(44 113 53 122)(45 112 54 121)(55 137 64 128)(56 136 65 127)(57 135 66 144)(58 134 67 143)(59 133 68 142)(60 132 69 141)(61 131 70 140)(62 130 71 139)(63 129 72 138)
(1 69 19 44)(2 58 32 45 8 64 20 51 14 70 26 39)(3 65 27 46 15 59 21 40 9 71 33 52)(4 72 22 47)(5 61 35 48 11 67 23 54 17 55 29 42)(6 68 30 49 18 62 24 43 12 56 36 37)(7 57 25 50)(10 60 28 53)(13 63 31 38)(16 66 34 41)(73 141 101 113)(74 130 96 114 80 136 102 120 86 142 108 126)(75 137 91 115 87 131 103 109 81 143 97 121)(76 144 104 116)(77 133 99 117 83 139 105 123 89 127 93 111)(78 140 94 118 90 134 106 112 84 128 100 124)(79 129 107 119)(82 132 92 122)(85 135 95 125)(88 138 98 110)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,82,10,73)(2,81,11,90)(3,80,12,89)(4,79,13,88)(5,78,14,87)(6,77,15,86)(7,76,16,85)(8,75,17,84)(9,74,18,83)(19,92,28,101)(20,91,29,100)(21,108,30,99)(22,107,31,98)(23,106,32,97)(24,105,33,96)(25,104,34,95)(26,103,35,94)(27,102,36,93)(37,120,46,111)(38,119,47,110)(39,118,48,109)(40,117,49,126)(41,116,50,125)(42,115,51,124)(43,114,52,123)(44,113,53,122)(45,112,54,121)(55,137,64,128)(56,136,65,127)(57,135,66,144)(58,134,67,143)(59,133,68,142)(60,132,69,141)(61,131,70,140)(62,130,71,139)(63,129,72,138), (1,69,19,44)(2,58,32,45,8,64,20,51,14,70,26,39)(3,65,27,46,15,59,21,40,9,71,33,52)(4,72,22,47)(5,61,35,48,11,67,23,54,17,55,29,42)(6,68,30,49,18,62,24,43,12,56,36,37)(7,57,25,50)(10,60,28,53)(13,63,31,38)(16,66,34,41)(73,141,101,113)(74,130,96,114,80,136,102,120,86,142,108,126)(75,137,91,115,87,131,103,109,81,143,97,121)(76,144,104,116)(77,133,99,117,83,139,105,123,89,127,93,111)(78,140,94,118,90,134,106,112,84,128,100,124)(79,129,107,119)(82,132,92,122)(85,135,95,125)(88,138,98,110)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,82,10,73)(2,81,11,90)(3,80,12,89)(4,79,13,88)(5,78,14,87)(6,77,15,86)(7,76,16,85)(8,75,17,84)(9,74,18,83)(19,92,28,101)(20,91,29,100)(21,108,30,99)(22,107,31,98)(23,106,32,97)(24,105,33,96)(25,104,34,95)(26,103,35,94)(27,102,36,93)(37,120,46,111)(38,119,47,110)(39,118,48,109)(40,117,49,126)(41,116,50,125)(42,115,51,124)(43,114,52,123)(44,113,53,122)(45,112,54,121)(55,137,64,128)(56,136,65,127)(57,135,66,144)(58,134,67,143)(59,133,68,142)(60,132,69,141)(61,131,70,140)(62,130,71,139)(63,129,72,138), (1,69,19,44)(2,58,32,45,8,64,20,51,14,70,26,39)(3,65,27,46,15,59,21,40,9,71,33,52)(4,72,22,47)(5,61,35,48,11,67,23,54,17,55,29,42)(6,68,30,49,18,62,24,43,12,56,36,37)(7,57,25,50)(10,60,28,53)(13,63,31,38)(16,66,34,41)(73,141,101,113)(74,130,96,114,80,136,102,120,86,142,108,126)(75,137,91,115,87,131,103,109,81,143,97,121)(76,144,104,116)(77,133,99,117,83,139,105,123,89,127,93,111)(78,140,94,118,90,134,106,112,84,128,100,124)(79,129,107,119)(82,132,92,122)(85,135,95,125)(88,138,98,110) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,82,10,73),(2,81,11,90),(3,80,12,89),(4,79,13,88),(5,78,14,87),(6,77,15,86),(7,76,16,85),(8,75,17,84),(9,74,18,83),(19,92,28,101),(20,91,29,100),(21,108,30,99),(22,107,31,98),(23,106,32,97),(24,105,33,96),(25,104,34,95),(26,103,35,94),(27,102,36,93),(37,120,46,111),(38,119,47,110),(39,118,48,109),(40,117,49,126),(41,116,50,125),(42,115,51,124),(43,114,52,123),(44,113,53,122),(45,112,54,121),(55,137,64,128),(56,136,65,127),(57,135,66,144),(58,134,67,143),(59,133,68,142),(60,132,69,141),(61,131,70,140),(62,130,71,139),(63,129,72,138)], [(1,69,19,44),(2,58,32,45,8,64,20,51,14,70,26,39),(3,65,27,46,15,59,21,40,9,71,33,52),(4,72,22,47),(5,61,35,48,11,67,23,54,17,55,29,42),(6,68,30,49,18,62,24,43,12,56,36,37),(7,57,25,50),(10,60,28,53),(13,63,31,38),(16,66,34,41),(73,141,101,113),(74,130,96,114,80,136,102,120,86,142,108,126),(75,137,91,115,87,131,103,109,81,143,97,121),(76,144,104,116),(77,133,99,117,83,139,105,123,89,127,93,111),(78,140,94,118,90,134,106,112,84,128,100,124),(79,129,107,119),(82,132,92,122),(85,135,95,125),(88,138,98,110)]])

62 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A6B6C6D···6I9A9B9C12A12B12C12D12E12F12G12H12I···12P18A···18I36A···36L
order12223334444446666···6999121212121212121212···1218···1836···36
size111123322181818182223···36662222666618···186···66···6

62 irreducible representations

dim111111112222222222222266666
type+++++-+-++-
imageC1C2C2C3C4C6C6C12S3D4Q8D6C3×S3C3×D4C3×Q8Dic6C4×S3C3⋊D4S3×C6C3×Dic6S3×C12C3×C3⋊D4C9⋊C6C2×C9⋊C6C36.C6C4×C9⋊C6Dic9⋊C6
kernelDic9⋊C12C2×C9⋊C12C2×C4×3- 1+2Dic9⋊C4C9⋊C12C2×Dic9C2×C36Dic9C6×C12C2×3- 1+2C2×3- 1+2C62C2×C12C18C18C3×C6C3×C6C3×C6C2×C6C6C6C6C2×C4C22C2C2C2
# reps121244281111222222244411222

Matrix representation of Dic9⋊C12 in GL8(𝔽37)

361000000
360000000
00001100
000036000
00000011
000000360
000360000
00110000
,
136000000
036000000
002910000
00980000
0000003628
000000291
0000362800
000029100
,
290000000
029000000
0030230000
001470000
000030700
0000302300
000000147
000000307

G:=sub<GL(8,GF(37))| [36,36,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,36,1,0,0,1,36,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,36,0,0,0,0,0,0,1,0,0,0],[1,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,29,9,0,0,0,0,0,0,1,8,0,0,0,0,0,0,0,0,0,0,36,29,0,0,0,0,0,0,28,1,0,0,0,0,36,29,0,0,0,0,0,0,28,1,0,0],[29,0,0,0,0,0,0,0,0,29,0,0,0,0,0,0,0,0,30,14,0,0,0,0,0,0,23,7,0,0,0,0,0,0,0,0,30,30,0,0,0,0,0,0,7,23,0,0,0,0,0,0,0,0,14,30,0,0,0,0,0,0,7,7] >;

Dic9⋊C12 in GAP, Magma, Sage, TeX

{\rm Dic}_9\rtimes C_{12}
% in TeX

G:=Group("Dic9:C12");
// GroupNames label

G:=SmallGroup(432,145);
// by ID

G=gap.SmallGroup(432,145);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,365,92,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^18=c^12=1,b^2=a^9,b*a*b^-1=a^-1,c*a*c^-1=a^13,c*b*c^-1=a^9*b>;
// generators/relations

׿
×
𝔽