Copied to
clipboard

G = C36⋊C12order 432 = 24·33

1st semidirect product of C36 and C12 acting via C12/C2=C6

metacyclic, supersoluble, monomial

Aliases: C361C12, C62.24D6, C4⋊(C9⋊C12), C4⋊Dic9⋊C3, (C2×C36).2C6, C18.4(C3×D4), C18.2(C3×Q8), C18.8(C2×C12), (C6×C12).10S3, C6.14(C3×D12), (C3×C6).21D12, (C3×C6).8Dic6, C6.8(C3×Dic6), C2.1(D36⋊C3), (C2×Dic9).2C6, C6.17(C6×Dic3), (C3×C12).3Dic3, C12.6(C3×Dic3), C32.(C4⋊Dic3), C2.2(C36.C6), 3- 1+22(C4⋊C4), (C4×3- 1+2)⋊1C4, (C2×3- 1+2).2Q8, (C2×3- 1+2).4D4, (C22×3- 1+2).4C22, C92(C3×C4⋊C4), C2.4(C2×C9⋊C12), (C2×C9⋊C12).2C2, (C2×C4).3(C9⋊C6), (C2×C18).4(C2×C6), (C2×C6).44(S3×C6), C22.5(C2×C9⋊C6), C3.3(C3×C4⋊Dic3), (C2×C12).13(C3×S3), (C3×C6).13(C2×Dic3), (C2×C4×3- 1+2).2C2, (C2×3- 1+2).8(C2×C4), SmallGroup(432,146)

Series: Derived Chief Lower central Upper central

C1C18 — C36⋊C12
C1C3C9C18C2×C18C22×3- 1+2C2×C9⋊C12 — C36⋊C12
C9C18 — C36⋊C12
C1C22C2×C4

Generators and relations for C36⋊C12
 G = < a,b | a36=b12=1, bab-1=a23 >

Subgroups: 262 in 86 conjugacy classes, 46 normal (32 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, C2×C4, C9, C9, C32, Dic3, C12, C12, C2×C6, C2×C6, C4⋊C4, C18, C18, C3×C6, C2×Dic3, C2×C12, C2×C12, 3- 1+2, Dic9, C36, C36, C2×C18, C2×C18, C3×Dic3, C3×C12, C62, C4⋊Dic3, C3×C4⋊C4, C2×3- 1+2, C2×Dic9, C2×C36, C2×C36, C6×Dic3, C6×C12, C9⋊C12, C4×3- 1+2, C22×3- 1+2, C4⋊Dic9, C3×C4⋊Dic3, C2×C9⋊C12, C2×C4×3- 1+2, C36⋊C12
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, D4, Q8, Dic3, C12, D6, C2×C6, C4⋊C4, C3×S3, Dic6, D12, C2×Dic3, C2×C12, C3×D4, C3×Q8, C3×Dic3, S3×C6, C4⋊Dic3, C3×C4⋊C4, C9⋊C6, C3×Dic6, C3×D12, C6×Dic3, C9⋊C12, C2×C9⋊C6, C3×C4⋊Dic3, C36.C6, D36⋊C3, C2×C9⋊C12, C36⋊C12

Smallest permutation representation of C36⋊C12
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 105 47 136)(2 80 60 135 26 92 48 111 14 104 72 123)(3 91 37 134 15 79 49 122 27 103 61 110)(4 102 50 133)(5 77 63 132 29 89 51 144 17 101 39 120)(6 88 40 131 18 76 52 119 30 100 64 143)(7 99 53 130)(8 74 66 129 32 86 54 141 20 98 42 117)(9 85 43 128 21 73 55 116 33 97 67 140)(10 96 56 127)(11 107 69 126 35 83 57 138 23 95 45 114)(12 82 46 125 24 106 58 113 36 94 70 137)(13 93 59 124)(16 90 62 121)(19 87 65 118)(22 84 68 115)(25 81 71 112)(28 78 38 109)(31 75 41 142)(34 108 44 139)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,105,47,136)(2,80,60,135,26,92,48,111,14,104,72,123)(3,91,37,134,15,79,49,122,27,103,61,110)(4,102,50,133)(5,77,63,132,29,89,51,144,17,101,39,120)(6,88,40,131,18,76,52,119,30,100,64,143)(7,99,53,130)(8,74,66,129,32,86,54,141,20,98,42,117)(9,85,43,128,21,73,55,116,33,97,67,140)(10,96,56,127)(11,107,69,126,35,83,57,138,23,95,45,114)(12,82,46,125,24,106,58,113,36,94,70,137)(13,93,59,124)(16,90,62,121)(19,87,65,118)(22,84,68,115)(25,81,71,112)(28,78,38,109)(31,75,41,142)(34,108,44,139)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,105,47,136)(2,80,60,135,26,92,48,111,14,104,72,123)(3,91,37,134,15,79,49,122,27,103,61,110)(4,102,50,133)(5,77,63,132,29,89,51,144,17,101,39,120)(6,88,40,131,18,76,52,119,30,100,64,143)(7,99,53,130)(8,74,66,129,32,86,54,141,20,98,42,117)(9,85,43,128,21,73,55,116,33,97,67,140)(10,96,56,127)(11,107,69,126,35,83,57,138,23,95,45,114)(12,82,46,125,24,106,58,113,36,94,70,137)(13,93,59,124)(16,90,62,121)(19,87,65,118)(22,84,68,115)(25,81,71,112)(28,78,38,109)(31,75,41,142)(34,108,44,139) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,105,47,136),(2,80,60,135,26,92,48,111,14,104,72,123),(3,91,37,134,15,79,49,122,27,103,61,110),(4,102,50,133),(5,77,63,132,29,89,51,144,17,101,39,120),(6,88,40,131,18,76,52,119,30,100,64,143),(7,99,53,130),(8,74,66,129,32,86,54,141,20,98,42,117),(9,85,43,128,21,73,55,116,33,97,67,140),(10,96,56,127),(11,107,69,126,35,83,57,138,23,95,45,114),(12,82,46,125,24,106,58,113,36,94,70,137),(13,93,59,124),(16,90,62,121),(19,87,65,118),(22,84,68,115),(25,81,71,112),(28,78,38,109),(31,75,41,142),(34,108,44,139)]])

62 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D4E4F6A6B6C6D···6I9A9B9C12A12B12C12D12E12F12G12H12I···12P18A···18I36A···36L
order12223334444446666···6999121212121212121212···1218···1836···36
size111123322181818182223···36662222666618···186···66···6

62 irreducible representations

dim111111112222222222222266666
type+++++--+-++-+-+
imageC1C2C2C3C4C6C6C12S3D4Q8Dic3D6C3×S3C3×D4C3×Q8Dic6D12C3×Dic3S3×C6C3×Dic6C3×D12C9⋊C6C9⋊C12C2×C9⋊C6C36.C6D36⋊C3
kernelC36⋊C12C2×C9⋊C12C2×C4×3- 1+2C4⋊Dic9C4×3- 1+2C2×Dic9C2×C36C36C6×C12C2×3- 1+2C2×3- 1+2C3×C12C62C2×C12C18C18C3×C6C3×C6C12C2×C6C6C6C2×C4C4C22C2C2
# reps121244281112122222424412122

Matrix representation of C36⋊C12 in GL8(𝔽37)

2334000000
029000000
000140000
006817000
008029000
0003008350
001225270298
003593014290
,
110000000
1526000000
0018002600
005193110016
00032513636
006001900
0032231924013
002449243213

G:=sub<GL(8,GF(37))| [23,0,0,0,0,0,0,0,34,29,0,0,0,0,0,0,0,0,0,6,8,0,12,35,0,0,14,8,0,30,25,9,0,0,0,17,29,0,27,30,0,0,0,0,0,8,0,14,0,0,0,0,0,35,29,29,0,0,0,0,0,0,8,0],[11,15,0,0,0,0,0,0,0,26,0,0,0,0,0,0,0,0,18,5,0,6,32,24,0,0,0,19,32,0,23,4,0,0,0,31,5,0,19,9,0,0,26,10,1,19,24,24,0,0,0,0,36,0,0,32,0,0,0,16,36,0,13,13] >;

C36⋊C12 in GAP, Magma, Sage, TeX

C_{36}\rtimes C_{12}
% in TeX

G:=Group("C36:C12");
// GroupNames label

G:=SmallGroup(432,146);
// by ID

G=gap.SmallGroup(432,146);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,365,176,10085,2035,292,14118]);
// Polycyclic

G:=Group<a,b|a^36=b^12=1,b*a*b^-1=a^23>;
// generators/relations

׿
×
𝔽