Extensions 1→N→G→Q→1 with N=C2xC3:Dic3 and Q=C6

Direct product G=NxQ with N=C2xC3:Dic3 and Q=C6
dρLabelID
C2xC6xC3:Dic3144C2xC6xC3:Dic3432,718

Semidirect products G=N:Q with N=C2xC3:Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xC3:Dic3):1C6 = C62.21D6φ: C6/C1C6 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):1C6432,141
(C2xC3:Dic3):2C6 = C62:3C12φ: C6/C1C6 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):2C6432,166
(C2xC3:Dic3):3C6 = C62.13D6φ: C6/C1C6 ⊆ Out C2xC3:Dic37212-(C2xC3:Dic3):3C6432,361
(C2xC3:Dic3):4C6 = C2xHe3:6D4φ: C6/C1C6 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):4C6432,377
(C2xC3:Dic3):5C6 = C2xC4xC32:C6φ: C6/C2C3 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):5C6432,349
(C2xC3:Dic3):6C6 = C22xC32:C12φ: C6/C2C3 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3):6C6432,376
(C2xC3:Dic3):7C6 = C3xD6:Dic3φ: C6/C3C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3):7C6432,426
(C2xC3:Dic3):8C6 = C3xC6.11D12φ: C6/C3C2 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3):8C6432,490
(C2xC3:Dic3):9C6 = C3xC62:5C4φ: C6/C3C2 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):9C6432,495
(C2xC3:Dic3):10C6 = S3xC6xDic3φ: C6/C3C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3):10C6432,651
(C2xC3:Dic3):11C6 = C3xD6.4D6φ: C6/C3C2 ⊆ Out C2xC3:Dic3244(C2xC3:Dic3):11C6432,653
(C2xC3:Dic3):12C6 = C6xD6:S3φ: C6/C3C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3):12C6432,655
(C2xC3:Dic3):13C6 = C3xC12.D6φ: C6/C3C2 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):13C6432,715
(C2xC3:Dic3):14C6 = C6xC32:7D4φ: C6/C3C2 ⊆ Out C2xC3:Dic372(C2xC3:Dic3):14C6432,719
(C2xC3:Dic3):15C6 = C3:S3xC2xC12φ: trivial image144(C2xC3:Dic3):15C6432,711

Non-split extensions G=N.Q with N=C2xC3:Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2xC3:Dic3).1C6 = C62.19D6φ: C6/C1C6 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).1C6432,139
(C2xC3:Dic3).2C6 = C62.20D6φ: C6/C1C6 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).2C6432,140
(C2xC3:Dic3).3C6 = C2xHe3:3Q8φ: C6/C1C6 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).3C6432,348
(C2xC3:Dic3).4C6 = C4xC32:C12φ: C6/C2C3 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).4C6432,138
(C2xC3:Dic3).5C6 = C3xDic32φ: C6/C3C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).5C6432,425
(C2xC3:Dic3).6C6 = C3xDic3:Dic3φ: C6/C3C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).6C6432,428
(C2xC3:Dic3).7C6 = C3xC62.C22φ: C6/C3C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).7C6432,429
(C2xC3:Dic3).8C6 = C3xC6.Dic6φ: C6/C3C2 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).8C6432,488
(C2xC3:Dic3).9C6 = C3xC12:Dic3φ: C6/C3C2 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).9C6432,489
(C2xC3:Dic3).10C6 = C6xC32:2C8φ: C6/C3C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).10C6432,632
(C2xC3:Dic3).11C6 = C3xC62.C4φ: C6/C3C2 ⊆ Out C2xC3:Dic3244(C2xC3:Dic3).11C6432,633
(C2xC3:Dic3).12C6 = C6xC32:2Q8φ: C6/C3C2 ⊆ Out C2xC3:Dic348(C2xC3:Dic3).12C6432,657
(C2xC3:Dic3).13C6 = C6xC32:4Q8φ: C6/C3C2 ⊆ Out C2xC3:Dic3144(C2xC3:Dic3).13C6432,710
(C2xC3:Dic3).14C6 = C12xC3:Dic3φ: trivial image144(C2xC3:Dic3).14C6432,487

׿
x
:
Z
F
o
wr
Q
<