Extensions 1→N→G→Q→1 with N=C9 and Q=D42S3

Direct product G=N×Q with N=C9 and Q=D42S3
dρLabelID
C9×D42S3724C9xD4:2S3432,359

Semidirect products G=N:Q with N=C9 and Q=D42S3
extensionφ:Q→Aut NdρLabelID
C91(D42S3) = D18.D6φ: D42S3/Dic6C2 ⊆ Aut C9724C9:1(D4:2S3)432,281
C92(D42S3) = D365S3φ: D42S3/C4×S3C2 ⊆ Aut C91444-C9:2(D4:2S3)432,288
C93(D42S3) = D18.3D6φ: D42S3/C2×Dic3C2 ⊆ Aut C9724C9:3(D4:2S3)432,305
C94(D42S3) = D18.4D6φ: D42S3/C3⋊D4C2 ⊆ Aut C9724-C9:4(D4:2S3)432,310
C95(D42S3) = C36.27D6φ: D42S3/C3×D4C2 ⊆ Aut C9216C9:5(D4:2S3)432,389

Non-split extensions G=N.Q with N=C9 and Q=D42S3
extensionφ:Q→Aut NdρLabelID
C9.(D42S3) = D42D27φ: D42S3/C3×D4C2 ⊆ Aut C92164-C9.(D4:2S3)432,48

׿
×
𝔽