# Extensions 1→N→G→Q→1 with N=C3×D36 and Q=C2

Direct product G=N×Q with N=C3×D36 and Q=C2
dρLabelID
C6×D36144C6xD36432,343

Semidirect products G=N:Q with N=C3×D36 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D36)⋊1C2 = C3⋊D72φ: C2/C1C2 ⊆ Out C3×D36724+(C3xD36):1C2432,64
(C3×D36)⋊2C2 = C3×D72φ: C2/C1C2 ⊆ Out C3×D361442(C3xD36):2C2432,108
(C3×D36)⋊3C2 = D365S3φ: C2/C1C2 ⊆ Out C3×D361444-(C3xD36):3C2432,288
(C3×D36)⋊4C2 = S3×D36φ: C2/C1C2 ⊆ Out C3×D36724+(C3xD36):4C2432,291
(C3×D36)⋊5C2 = D36⋊S3φ: C2/C1C2 ⊆ Out C3×D361444(C3xD36):5C2432,68
(C3×D36)⋊6C2 = C3×D4⋊D9φ: C2/C1C2 ⊆ Out C3×D36724(C3xD36):6C2432,149
(C3×D36)⋊7C2 = D18.D6φ: C2/C1C2 ⊆ Out C3×D36724(C3xD36):7C2432,281
(C3×D36)⋊8C2 = C36⋊D6φ: C2/C1C2 ⊆ Out C3×D36724(C3xD36):8C2432,293
(C3×D36)⋊9C2 = C3×D4×D9φ: C2/C1C2 ⊆ Out C3×D36724(C3xD36):9C2432,356
(C3×D36)⋊10C2 = C3×Q83D9φ: C2/C1C2 ⊆ Out C3×D361444(C3xD36):10C2432,365
(C3×D36)⋊11C2 = C3×D365C2φ: trivial image722(C3xD36):11C2432,344

Non-split extensions G=N.Q with N=C3×D36 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D36).1C2 = D36.S3φ: C2/C1C2 ⊆ Out C3×D361444-(C3xD36).1C2432,62
(C3×D36).2C2 = C3×C72⋊C2φ: C2/C1C2 ⊆ Out C3×D361442(C3xD36).2C2432,107
(C3×D36).3C2 = Dic6⋊D9φ: C2/C1C2 ⊆ Out C3×D361444(C3xD36).3C2432,72
(C3×D36).4C2 = C3×Q82D9φ: C2/C1C2 ⊆ Out C3×D361444(C3xD36).4C2432,157

׿
×
𝔽