Copied to
clipboard

G = C6×D36order 432 = 24·33

Direct product of C6 and D36

direct product, metabelian, supersoluble, monomial

Aliases: C6×D36, C129D18, C62.130D6, C42(C6×D9), C95(C6×D4), C367(C2×C6), (C6×C36)⋊6C2, (C2×C12)⋊6D9, C184(C3×D4), (C3×C18)⋊5D4, (C2×C36)⋊11C6, D185(C2×C6), C3.1(C6×D12), C12.74(S3×C6), (C6×C12).43S3, (C3×C36)⋊9C22, C6.16(C3×D12), (C3×C6).59D12, (C2×C6).53D18, (C22×D9)⋊7C6, (C6×D9)⋊8C22, (C3×C12).206D6, C6.51(C22×D9), C32.4(C2×D12), C22.10(C6×D9), C18.17(C22×C6), (C6×C18).44C22, (C3×C18).40C23, (C2×C6×D9)⋊4C2, C2.4(C2×C6×D9), (C2×C4)⋊2(C3×D9), (C3×C9)⋊11(C2×D4), C6.21(S3×C2×C6), (C2×C6).51(S3×C6), (C2×C12).15(C3×S3), (C2×C18).30(C2×C6), (C3×C6).154(C22×S3), SmallGroup(432,343)

Series: Derived Chief Lower central Upper central

C1C18 — C6×D36
C1C3C9C18C3×C18C6×D9C2×C6×D9 — C6×D36
C9C18 — C6×D36
C1C2×C6C2×C12

Generators and relations for C6×D36
 G = < a,b,c | a6=b36=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 782 in 178 conjugacy classes, 70 normal (26 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C9, C9, C32, C12, C12, D6, C2×C6, C2×C6, C2×D4, D9, C18, C18, C18, C3×S3, C3×C6, C3×C6, D12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C3×C9, C36, C36, D18, D18, C2×C18, C2×C18, C3×C12, S3×C6, C62, C2×D12, C6×D4, C3×D9, C3×C18, C3×C18, D36, C2×C36, C2×C36, C22×D9, C3×D12, C6×C12, S3×C2×C6, C3×C36, C6×D9, C6×D9, C6×C18, C2×D36, C6×D12, C3×D36, C6×C36, C2×C6×D9, C6×D36
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, D9, C3×S3, D12, C3×D4, C22×S3, C22×C6, D18, S3×C6, C2×D12, C6×D4, C3×D9, D36, C22×D9, C3×D12, S3×C2×C6, C6×D9, C2×D36, C6×D12, C3×D36, C2×C6×D9, C6×D36

Smallest permutation representation of C6×D36
On 144 points
Generators in S144
(1 63 25 51 13 39)(2 64 26 52 14 40)(3 65 27 53 15 41)(4 66 28 54 16 42)(5 67 29 55 17 43)(6 68 30 56 18 44)(7 69 31 57 19 45)(8 70 32 58 20 46)(9 71 33 59 21 47)(10 72 34 60 22 48)(11 37 35 61 23 49)(12 38 36 62 24 50)(73 110 85 122 97 134)(74 111 86 123 98 135)(75 112 87 124 99 136)(76 113 88 125 100 137)(77 114 89 126 101 138)(78 115 90 127 102 139)(79 116 91 128 103 140)(80 117 92 129 104 141)(81 118 93 130 105 142)(82 119 94 131 106 143)(83 120 95 132 107 144)(84 121 96 133 108 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 117)(2 116)(3 115)(4 114)(5 113)(6 112)(7 111)(8 110)(9 109)(10 144)(11 143)(12 142)(13 141)(14 140)(15 139)(16 138)(17 137)(18 136)(19 135)(20 134)(21 133)(22 132)(23 131)(24 130)(25 129)(26 128)(27 127)(28 126)(29 125)(30 124)(31 123)(32 122)(33 121)(34 120)(35 119)(36 118)(37 82)(38 81)(39 80)(40 79)(41 78)(42 77)(43 76)(44 75)(45 74)(46 73)(47 108)(48 107)(49 106)(50 105)(51 104)(52 103)(53 102)(54 101)(55 100)(56 99)(57 98)(58 97)(59 96)(60 95)(61 94)(62 93)(63 92)(64 91)(65 90)(66 89)(67 88)(68 87)(69 86)(70 85)(71 84)(72 83)

G:=sub<Sym(144)| (1,63,25,51,13,39)(2,64,26,52,14,40)(3,65,27,53,15,41)(4,66,28,54,16,42)(5,67,29,55,17,43)(6,68,30,56,18,44)(7,69,31,57,19,45)(8,70,32,58,20,46)(9,71,33,59,21,47)(10,72,34,60,22,48)(11,37,35,61,23,49)(12,38,36,62,24,50)(73,110,85,122,97,134)(74,111,86,123,98,135)(75,112,87,124,99,136)(76,113,88,125,100,137)(77,114,89,126,101,138)(78,115,90,127,102,139)(79,116,91,128,103,140)(80,117,92,129,104,141)(81,118,93,130,105,142)(82,119,94,131,106,143)(83,120,95,132,107,144)(84,121,96,133,108,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,117)(2,116)(3,115)(4,114)(5,113)(6,112)(7,111)(8,110)(9,109)(10,144)(11,143)(12,142)(13,141)(14,140)(15,139)(16,138)(17,137)(18,136)(19,135)(20,134)(21,133)(22,132)(23,131)(24,130)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,120)(35,119)(36,118)(37,82)(38,81)(39,80)(40,79)(41,78)(42,77)(43,76)(44,75)(45,74)(46,73)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,84)(72,83)>;

G:=Group( (1,63,25,51,13,39)(2,64,26,52,14,40)(3,65,27,53,15,41)(4,66,28,54,16,42)(5,67,29,55,17,43)(6,68,30,56,18,44)(7,69,31,57,19,45)(8,70,32,58,20,46)(9,71,33,59,21,47)(10,72,34,60,22,48)(11,37,35,61,23,49)(12,38,36,62,24,50)(73,110,85,122,97,134)(74,111,86,123,98,135)(75,112,87,124,99,136)(76,113,88,125,100,137)(77,114,89,126,101,138)(78,115,90,127,102,139)(79,116,91,128,103,140)(80,117,92,129,104,141)(81,118,93,130,105,142)(82,119,94,131,106,143)(83,120,95,132,107,144)(84,121,96,133,108,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,117)(2,116)(3,115)(4,114)(5,113)(6,112)(7,111)(8,110)(9,109)(10,144)(11,143)(12,142)(13,141)(14,140)(15,139)(16,138)(17,137)(18,136)(19,135)(20,134)(21,133)(22,132)(23,131)(24,130)(25,129)(26,128)(27,127)(28,126)(29,125)(30,124)(31,123)(32,122)(33,121)(34,120)(35,119)(36,118)(37,82)(38,81)(39,80)(40,79)(41,78)(42,77)(43,76)(44,75)(45,74)(46,73)(47,108)(48,107)(49,106)(50,105)(51,104)(52,103)(53,102)(54,101)(55,100)(56,99)(57,98)(58,97)(59,96)(60,95)(61,94)(62,93)(63,92)(64,91)(65,90)(66,89)(67,88)(68,87)(69,86)(70,85)(71,84)(72,83) );

G=PermutationGroup([[(1,63,25,51,13,39),(2,64,26,52,14,40),(3,65,27,53,15,41),(4,66,28,54,16,42),(5,67,29,55,17,43),(6,68,30,56,18,44),(7,69,31,57,19,45),(8,70,32,58,20,46),(9,71,33,59,21,47),(10,72,34,60,22,48),(11,37,35,61,23,49),(12,38,36,62,24,50),(73,110,85,122,97,134),(74,111,86,123,98,135),(75,112,87,124,99,136),(76,113,88,125,100,137),(77,114,89,126,101,138),(78,115,90,127,102,139),(79,116,91,128,103,140),(80,117,92,129,104,141),(81,118,93,130,105,142),(82,119,94,131,106,143),(83,120,95,132,107,144),(84,121,96,133,108,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,117),(2,116),(3,115),(4,114),(5,113),(6,112),(7,111),(8,110),(9,109),(10,144),(11,143),(12,142),(13,141),(14,140),(15,139),(16,138),(17,137),(18,136),(19,135),(20,134),(21,133),(22,132),(23,131),(24,130),(25,129),(26,128),(27,127),(28,126),(29,125),(30,124),(31,123),(32,122),(33,121),(34,120),(35,119),(36,118),(37,82),(38,81),(39,80),(40,79),(41,78),(42,77),(43,76),(44,75),(45,74),(46,73),(47,108),(48,107),(49,106),(50,105),(51,104),(52,103),(53,102),(54,101),(55,100),(56,99),(57,98),(58,97),(59,96),(60,95),(61,94),(62,93),(63,92),(64,91),(65,90),(66,89),(67,88),(68,87),(69,86),(70,85),(71,84),(72,83)]])

126 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E4A4B6A···6F6G···6O6P···6W9A···9I12A···12P18A···18AA36A···36AJ
order1222222233333446···66···66···69···912···1218···1836···36
size11111818181811222221···12···218···182···22···22···22···2

126 irreducible representations

dim11111111222222222222222222
type+++++++++++++
imageC1C2C2C2C3C6C6C6S3D4D6D6D9C3×S3C3×D4D12D18S3×C6D18S3×C6C3×D9D36C3×D12C6×D9C6×D9C3×D36
kernelC6×D36C3×D36C6×C36C2×C6×D9C2×D36D36C2×C36C22×D9C6×C12C3×C18C3×C12C62C2×C12C2×C12C18C3×C6C12C12C2×C6C2×C6C2×C4C6C6C4C22C2
# reps14122824122132446432612812624

Matrix representation of C6×D36 in GL3(𝔽37) generated by

1100
0270
0027
,
100
0320
0022
,
3600
0021
0300
G:=sub<GL(3,GF(37))| [11,0,0,0,27,0,0,0,27],[1,0,0,0,32,0,0,0,22],[36,0,0,0,0,30,0,21,0] >;

C6×D36 in GAP, Magma, Sage, TeX

C_6\times D_{36}
% in TeX

G:=Group("C6xD36");
// GroupNames label

G:=SmallGroup(432,343);
// by ID

G=gap.SmallGroup(432,343);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,590,142,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^6=b^36=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽