direct product, metacyclic, supersoluble, monomial
Aliases: C3×D36, C36⋊5C6, C12⋊3D9, D18⋊4C6, C6.21D18, C32.3D12, C4⋊(C3×D9), (C3×C9)⋊5D4, C9⋊4(C3×D4), (C3×C36)⋊2C2, (C6×D9)⋊3C2, C6.8(S3×C6), C2.4(C6×D9), C12.2(C3×S3), C3.1(C3×D12), (C3×C6).47D6, (C3×C12).13S3, C18.11(C2×C6), (C3×C18).15C22, SmallGroup(216,46)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×D36
G = < a,b,c | a3=b36=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)(37 49 61)(38 50 62)(39 51 63)(40 52 64)(41 53 65)(42 54 66)(43 55 67)(44 56 68)(45 57 69)(46 58 70)(47 59 71)(48 60 72)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 40)(14 39)(15 38)(16 37)(17 72)(18 71)(19 70)(20 69)(21 68)(22 67)(23 66)(24 65)(25 64)(26 63)(27 62)(28 61)(29 60)(30 59)(31 58)(32 57)(33 56)(34 55)(35 54)(36 53)
G:=sub<Sym(72)| (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53)>;
G:=Group( (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,40)(14,39)(15,38)(16,37)(17,72)(18,71)(19,70)(20,69)(21,68)(22,67)(23,66)(24,65)(25,64)(26,63)(27,62)(28,61)(29,60)(30,59)(31,58)(32,57)(33,56)(34,55)(35,54)(36,53) );
G=PermutationGroup([[(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24),(37,49,61),(38,50,62),(39,51,63),(40,52,64),(41,53,65),(42,54,66),(43,55,67),(44,56,68),(45,57,69),(46,58,70),(47,59,71),(48,60,72)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,40),(14,39),(15,38),(16,37),(17,72),(18,71),(19,70),(20,69),(21,68),(22,67),(23,66),(24,65),(25,64),(26,63),(27,62),(28,61),(29,60),(30,59),(31,58),(32,57),(33,56),(34,55),(35,54),(36,53)]])
C3×D36 is a maximal subgroup of
D36.S3 C3⋊D72 D36⋊S3 Dic6⋊D9 D18.D6 D36⋊5S3 C36⋊D6 C3×D4×D9
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 9A | ··· | 9I | 12A | ··· | 12H | 18A | ··· | 18I | 36A | ··· | 36R |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 12 | ··· | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 18 | 18 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D4 | D6 | D9 | C3×S3 | C3×D4 | D12 | D18 | S3×C6 | C3×D9 | D36 | C3×D12 | C6×D9 | C3×D36 |
kernel | C3×D36 | C3×C36 | C6×D9 | D36 | C36 | D18 | C3×C12 | C3×C9 | C3×C6 | C12 | C12 | C9 | C32 | C6 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 3 | 2 | 2 | 2 | 3 | 2 | 6 | 6 | 4 | 6 | 12 |
Matrix representation of C3×D36 ►in GL2(𝔽37) generated by
26 | 0 |
0 | 26 |
13 | 0 |
1 | 20 |
31 | 32 |
7 | 6 |
G:=sub<GL(2,GF(37))| [26,0,0,26],[13,1,0,20],[31,7,32,6] >;
C3×D36 in GAP, Magma, Sage, TeX
C_3\times D_{36}
% in TeX
G:=Group("C3xD36");
// GroupNames label
G:=SmallGroup(216,46);
// by ID
G=gap.SmallGroup(216,46);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-3,169,79,3604,208,5189]);
// Polycyclic
G:=Group<a,b,c|a^3=b^36=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export