extension | φ:Q→Aut N | d | ρ | Label | ID |
C18.1Dic6 = Dic9⋊Dic3 | φ: Dic6/Dic3 → C2 ⊆ Aut C18 | 144 | | C18.1Dic6 | 432,88 |
C18.2Dic6 = C18.Dic6 | φ: Dic6/Dic3 → C2 ⊆ Aut C18 | 144 | | C18.2Dic6 | 432,89 |
C18.3Dic6 = Dic3⋊Dic9 | φ: Dic6/Dic3 → C2 ⊆ Aut C18 | 144 | | C18.3Dic6 | 432,90 |
C18.4Dic6 = Dic27⋊C4 | φ: Dic6/C12 → C2 ⊆ Aut C18 | 432 | | C18.4Dic6 | 432,12 |
C18.5Dic6 = C4⋊Dic27 | φ: Dic6/C12 → C2 ⊆ Aut C18 | 432 | | C18.5Dic6 | 432,13 |
C18.6Dic6 = C2×Dic54 | φ: Dic6/C12 → C2 ⊆ Aut C18 | 432 | | C18.6Dic6 | 432,43 |
C18.7Dic6 = C6.Dic18 | φ: Dic6/C12 → C2 ⊆ Aut C18 | 432 | | C18.7Dic6 | 432,181 |
C18.8Dic6 = C36⋊Dic3 | φ: Dic6/C12 → C2 ⊆ Aut C18 | 432 | | C18.8Dic6 | 432,182 |
C18.9Dic6 = C9×Dic3⋊C4 | central extension (φ=1) | 144 | | C18.9Dic6 | 432,132 |
C18.10Dic6 = C9×C4⋊Dic3 | central extension (φ=1) | 144 | | C18.10Dic6 | 432,133 |