Extensions 1→N→G→Q→1 with N=C18 and Q=Dic6

Direct product G=N×Q with N=C18 and Q=Dic6
dρLabelID
C18×Dic6144C18xDic6432,341

Semidirect products G=N:Q with N=C18 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C181Dic6 = C2×C9⋊Dic6φ: Dic6/Dic3C2 ⊆ Aut C18144C18:1Dic6432,303
C182Dic6 = C2×C12.D9φ: Dic6/C12C2 ⊆ Aut C18432C18:2Dic6432,380

Non-split extensions G=N.Q with N=C18 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C18.1Dic6 = Dic9⋊Dic3φ: Dic6/Dic3C2 ⊆ Aut C18144C18.1Dic6432,88
C18.2Dic6 = C18.Dic6φ: Dic6/Dic3C2 ⊆ Aut C18144C18.2Dic6432,89
C18.3Dic6 = Dic3⋊Dic9φ: Dic6/Dic3C2 ⊆ Aut C18144C18.3Dic6432,90
C18.4Dic6 = Dic27⋊C4φ: Dic6/C12C2 ⊆ Aut C18432C18.4Dic6432,12
C18.5Dic6 = C4⋊Dic27φ: Dic6/C12C2 ⊆ Aut C18432C18.5Dic6432,13
C18.6Dic6 = C2×Dic54φ: Dic6/C12C2 ⊆ Aut C18432C18.6Dic6432,43
C18.7Dic6 = C6.Dic18φ: Dic6/C12C2 ⊆ Aut C18432C18.7Dic6432,181
C18.8Dic6 = C36⋊Dic3φ: Dic6/C12C2 ⊆ Aut C18432C18.8Dic6432,182
C18.9Dic6 = C9×Dic3⋊C4central extension (φ=1)144C18.9Dic6432,132
C18.10Dic6 = C9×C4⋊Dic3central extension (φ=1)144C18.10Dic6432,133

׿
×
𝔽