Extensions 1→N→G→Q→1 with N=C3xC9 and Q=C2xC8

Direct product G=NxQ with N=C3xC9 and Q=C2xC8
dρLabelID
C6xC72432C6xC72432,209

Semidirect products G=N:Q with N=C3xC9 and Q=C2xC8
extensionφ:Q→Aut NdρLabelID
(C3xC9):1(C2xC8) = D9xC3:C8φ: C2xC8/C4C22 ⊆ Aut C3xC91444(C3xC9):1(C2xC8)432,58
(C3xC9):2(C2xC8) = C36.38D6φ: C2xC8/C4C22 ⊆ Aut C3xC9724(C3xC9):2(C2xC8)432,59
(C3xC9):3(C2xC8) = S3xC9:C8φ: C2xC8/C4C22 ⊆ Aut C3xC91444(C3xC9):3(C2xC8)432,66
(C3xC9):4(C2xC8) = S3xC72φ: C2xC8/C8C2 ⊆ Aut C3xC91442(C3xC9):4(C2xC8)432,109
(C3xC9):5(C2xC8) = D9xC24φ: C2xC8/C8C2 ⊆ Aut C3xC91442(C3xC9):5(C2xC8)432,105
(C3xC9):6(C2xC8) = C8xC9:S3φ: C2xC8/C8C2 ⊆ Aut C3xC9216(C3xC9):6(C2xC8)432,169
(C3xC9):7(C2xC8) = C18xC3:C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC9144(C3xC9):7(C2xC8)432,126
(C3xC9):8(C2xC8) = C6xC9:C8φ: C2xC8/C2xC4C2 ⊆ Aut C3xC9144(C3xC9):8(C2xC8)432,124
(C3xC9):9(C2xC8) = C2xC36.S3φ: C2xC8/C2xC4C2 ⊆ Aut C3xC9432(C3xC9):9(C2xC8)432,178


׿
x
:
Z
F
o
wr
Q
<