Extensions 1→N→G→Q→1 with N=C2×C4×3- 1+2 and Q=C2

Direct product G=N×Q with N=C2×C4×3- 1+2 and Q=C2
C22×C4×3- 1+2144C2^2xC4xES-(3,1)432,402

Semidirect products G=N:Q with N=C2×C4×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4×3- 1+2)⋊1C2 = D366C6φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2726(C2xC4xES-(3,1)):1C2432,355
(C2×C4×3- 1+2)⋊2C2 = C2×D36⋊C3φ: C2/C1C2 ⊆ Out C2×C4×3- 1+272(C2xC4xES-(3,1)):2C2432,354
(C2×C4×3- 1+2)⋊3C2 = C2×C4×C9⋊C6φ: C2/C1C2 ⊆ Out C2×C4×3- 1+272(C2xC4xES-(3,1)):3C2432,353
(C2×C4×3- 1+2)⋊4C2 = C2×D4×3- 1+2φ: C2/C1C2 ⊆ Out C2×C4×3- 1+272(C2xC4xES-(3,1)):4C2432,405
(C2×C4×3- 1+2)⋊5C2 = C4○D4×3- 1+2φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2726(C2xC4xES-(3,1)):5C2432,411
(C2×C4×3- 1+2)⋊6C2 = D18⋊C12φ: C2/C1C2 ⊆ Out C2×C4×3- 1+272(C2xC4xES-(3,1)):6C2432,147
(C2×C4×3- 1+2)⋊7C2 = C22⋊C4×3- 1+2φ: C2/C1C2 ⊆ Out C2×C4×3- 1+272(C2xC4xES-(3,1)):7C2432,205

Non-split extensions G=N.Q with N=C2×C4×3- 1+2 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C4×3- 1+2).1C2 = C36.C12φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2726(C2xC4xES-(3,1)).1C2432,143
(C2×C4×3- 1+2).2C2 = C36⋊C12φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2144(C2xC4xES-(3,1)).2C2432,146
(C2×C4×3- 1+2).3C2 = C2×C36.C6φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2144(C2xC4xES-(3,1)).3C2432,352
(C2×C4×3- 1+2).4C2 = C2×C9⋊C24φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2144(C2xC4xES-(3,1)).4C2432,142
(C2×C4×3- 1+2).5C2 = C4×C9⋊C12φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2144(C2xC4xES-(3,1)).5C2432,144
(C2×C4×3- 1+2).6C2 = M4(2)×3- 1+2φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2726(C2xC4xES-(3,1)).6C2432,214
(C2×C4×3- 1+2).7C2 = C2×Q8×3- 1+2φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2144(C2xC4xES-(3,1)).7C2432,408
(C2×C4×3- 1+2).8C2 = Dic9⋊C12φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2144(C2xC4xES-(3,1)).8C2432,145
(C2×C4×3- 1+2).9C2 = C4⋊C4×3- 1+2φ: C2/C1C2 ⊆ Out C2×C4×3- 1+2144(C2xC4xES-(3,1)).9C2432,208
(C2×C4×3- 1+2).10C2 = C42×3- 1+2φ: trivial image144(C2xC4xES-(3,1)).10C2432,202
(C2×C4×3- 1+2).11C2 = C2×C8×3- 1+2φ: trivial image144(C2xC4xES-(3,1)).11C2432,211