direct product, metabelian, supersoluble, monomial
Aliases: C2×D36⋊C3, D36⋊5C6, C62.39D6, (C2×D36)⋊C3, C9⋊1(C6×D4), (C2×C36)⋊2C6, C36⋊2(C2×C6), C18⋊1(C3×D4), D18⋊1(C2×C6), C3.3(C6×D12), C32.(C2×D12), C12.79(S3×C6), (C6×C12).14S3, (C3×C12).52D6, C6.18(C3×D12), (C3×C6).28D12, (C22×D9)⋊1C6, C18.3(C22×C6), 3- 1+2⋊1(C2×D4), (C2×3- 1+2)⋊1D4, (C4×3- 1+2)⋊2C22, (C2×3- 1+2).3C23, (C22×3- 1+2).9C22, C4⋊2(C2×C9⋊C6), C6.29(S3×C2×C6), (C2×C4)⋊2(C9⋊C6), (C22×C9⋊C6)⋊1C2, (C2×C9⋊C6)⋊1C22, (C2×C18).9(C2×C6), (C2×C6).59(S3×C6), C2.4(C22×C9⋊C6), (C2×C12).19(C3×S3), C22.10(C2×C9⋊C6), (C3×C6).25(C22×S3), (C2×C4×3- 1+2)⋊2C2, SmallGroup(432,354)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C9 — C18 — C2×3- 1+2 — C2×C9⋊C6 — C22×C9⋊C6 — C2×D36⋊C3 |
Generators and relations for C2×D36⋊C3
G = < a,b,c,d | a2=b36=c2=d3=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b13, dcd-1=b12c >
Subgroups: 782 in 170 conjugacy classes, 62 normal (22 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C9, C9, C32, C12, C12, D6, C2×C6, C2×C6, C2×D4, D9, C18, C18, C18, C3×S3, C3×C6, C3×C6, D12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, 3- 1+2, C36, C36, D18, D18, C2×C18, C2×C18, C3×C12, S3×C6, C62, C2×D12, C6×D4, C9⋊C6, C2×3- 1+2, C2×3- 1+2, D36, C2×C36, C2×C36, C22×D9, C3×D12, C6×C12, S3×C2×C6, C4×3- 1+2, C2×C9⋊C6, C2×C9⋊C6, C22×3- 1+2, C2×D36, C6×D12, D36⋊C3, C2×C4×3- 1+2, C22×C9⋊C6, C2×D36⋊C3
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, D12, C3×D4, C22×S3, C22×C6, S3×C6, C2×D12, C6×D4, C9⋊C6, C3×D12, S3×C2×C6, C2×C9⋊C6, C6×D12, D36⋊C3, C22×C9⋊C6, C2×D36⋊C3
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 71)(10 72)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 57)(32 58)(33 59)(34 60)(35 61)(36 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 53)(2 52)(3 51)(4 50)(5 49)(6 48)(7 47)(8 46)(9 45)(10 44)(11 43)(12 42)(13 41)(14 40)(15 39)(16 38)(17 37)(18 72)(19 71)(20 70)(21 69)(22 68)(23 67)(24 66)(25 65)(26 64)(27 63)(28 62)(29 61)(30 60)(31 59)(32 58)(33 57)(34 56)(35 55)(36 54)
(2 26 14)(3 15 27)(5 29 17)(6 18 30)(8 32 20)(9 21 33)(11 35 23)(12 24 36)(37 61 49)(38 50 62)(40 64 52)(41 53 65)(43 67 55)(44 56 68)(46 70 58)(47 59 71)
G:=sub<Sym(72)| (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,72)(19,71)(20,70)(21,69)(22,68)(23,67)(24,66)(25,65)(26,64)(27,63)(28,62)(29,61)(30,60)(31,59)(32,58)(33,57)(34,56)(35,55)(36,54), (2,26,14)(3,15,27)(5,29,17)(6,18,30)(8,32,20)(9,21,33)(11,35,23)(12,24,36)(37,61,49)(38,50,62)(40,64,52)(41,53,65)(43,67,55)(44,56,68)(46,70,58)(47,59,71)>;
G:=Group( (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,71)(10,72)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,59)(34,60)(35,61)(36,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,53)(2,52)(3,51)(4,50)(5,49)(6,48)(7,47)(8,46)(9,45)(10,44)(11,43)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,72)(19,71)(20,70)(21,69)(22,68)(23,67)(24,66)(25,65)(26,64)(27,63)(28,62)(29,61)(30,60)(31,59)(32,58)(33,57)(34,56)(35,55)(36,54), (2,26,14)(3,15,27)(5,29,17)(6,18,30)(8,32,20)(9,21,33)(11,35,23)(12,24,36)(37,61,49)(38,50,62)(40,64,52)(41,53,65)(43,67,55)(44,56,68)(46,70,58)(47,59,71) );
G=PermutationGroup([[(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,71),(10,72),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,57),(32,58),(33,59),(34,60),(35,61),(36,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,53),(2,52),(3,51),(4,50),(5,49),(6,48),(7,47),(8,46),(9,45),(10,44),(11,43),(12,42),(13,41),(14,40),(15,39),(16,38),(17,37),(18,72),(19,71),(20,70),(21,69),(22,68),(23,67),(24,66),(25,65),(26,64),(27,63),(28,62),(29,61),(30,60),(31,59),(32,58),(33,57),(34,56),(35,55),(36,54)], [(2,26,14),(3,15,27),(5,29,17),(6,18,30),(8,32,20),(9,21,33),(11,35,23),(12,24,36),(37,61,49),(38,50,62),(40,64,52),(41,53,65),(43,67,55),(44,56,68),(46,70,58),(47,59,71)]])
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | 6B | 6C | 6D | ··· | 6I | 6J | ··· | 6Q | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 18A | ··· | 18I | 36A | ··· | 36L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 1 | 1 | 18 | 18 | 18 | 18 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 18 | ··· | 18 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | S3 | D4 | D6 | D6 | C3×S3 | C3×D4 | D12 | S3×C6 | S3×C6 | C3×D12 | C9⋊C6 | C2×C9⋊C6 | C2×C9⋊C6 | D36⋊C3 |
kernel | C2×D36⋊C3 | D36⋊C3 | C2×C4×3- 1+2 | C22×C9⋊C6 | C2×D36 | D36 | C2×C36 | C22×D9 | C6×C12 | C2×3- 1+2 | C3×C12 | C62 | C2×C12 | C18 | C3×C6 | C12 | C2×C6 | C6 | C2×C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 2 | 2 | 8 | 2 | 4 | 1 | 2 | 2 | 1 | 2 | 4 | 4 | 4 | 2 | 8 | 1 | 2 | 1 | 4 |
Matrix representation of C2×D36⋊C3 ►in GL8(𝔽37)
36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 36 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 36 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 10 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 32 | 5 |
0 | 0 | 32 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 27 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 5 | 0 | 0 |
36 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 |
0 | 0 | 0 | 0 | 0 | 0 | 36 | 0 |
0 | 0 | 0 | 0 | 0 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 0 | 0 | 0 |
0 | 0 | 0 | 36 | 0 | 0 | 0 | 0 |
0 | 0 | 36 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 36 | 36 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 36 | 36 |
G:=sub<GL(8,GF(37))| [36,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,1,0,0,0,0,0,0,36,36,0,0,0,0,0,0,0,0,0,0,32,10,0,0,0,0,0,0,27,5,0,0,0,0,0,0,0,0,32,10,0,0,0,0,0,0,27,5,0,0,10,32,0,0,0,0,0,0,5,5,0,0,0,0],[36,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0,0,36,0,0,0,0,0],[10,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,36,1,0,0,0,0,0,0,36,0,0,0,0,0,0,0,0,0,0,36,0,0,0,0,0,0,1,36] >;
C2×D36⋊C3 in GAP, Magma, Sage, TeX
C_2\times D_{36}\rtimes C_3
% in TeX
G:=Group("C2xD36:C3");
// GroupNames label
G:=SmallGroup(432,354);
// by ID
G=gap.SmallGroup(432,354);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-3,590,142,10085,1034,292,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^36=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^13,d*c*d^-1=b^12*c>;
// generators/relations