Extensions 1→N→G→Q→1 with N=C3×C9 and Q=M4(2)

Direct product G=N×Q with N=C3×C9 and Q=M4(2)
dρLabelID
M4(2)×C3×C9216M4(2)xC3xC9432,212

Semidirect products G=N:Q with N=C3×C9 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1M4(2) = C36.39D6φ: M4(2)/C4C22 ⊆ Aut C3×C91444(C3xC9):1M4(2)432,60
(C3×C9)⋊2M4(2) = C36.40D6φ: M4(2)/C4C22 ⊆ Aut C3×C9724(C3xC9):2M4(2)432,61
(C3×C9)⋊3M4(2) = D6.Dic9φ: M4(2)/C4C22 ⊆ Aut C3×C91444(C3xC9):3M4(2)432,67
(C3×C9)⋊4M4(2) = C9×C8⋊S3φ: M4(2)/C8C2 ⊆ Aut C3×C91442(C3xC9):4M4(2)432,110
(C3×C9)⋊5M4(2) = C3×C8⋊D9φ: M4(2)/C8C2 ⊆ Aut C3×C91442(C3xC9):5M4(2)432,106
(C3×C9)⋊6M4(2) = C72⋊S3φ: M4(2)/C8C2 ⊆ Aut C3×C9216(C3xC9):6M4(2)432,170
(C3×C9)⋊7M4(2) = C9×C4.Dic3φ: M4(2)/C2×C4C2 ⊆ Aut C3×C9722(C3xC9):7M4(2)432,127
(C3×C9)⋊8M4(2) = C3×C4.Dic9φ: M4(2)/C2×C4C2 ⊆ Aut C3×C9722(C3xC9):8M4(2)432,125
(C3×C9)⋊9M4(2) = C36.69D6φ: M4(2)/C2×C4C2 ⊆ Aut C3×C9216(C3xC9):9M4(2)432,179


׿
×
𝔽