# Extensions 1→N→G→Q→1 with N=C22 and Q=D4.D7

Direct product G=N×Q with N=C22 and Q=D4.D7
dρLabelID
C22×D4.D7224C2^2xD4.D7448,1247

Semidirect products G=N:Q with N=C22 and Q=D4.D7
extensionφ:Q→Aut NdρLabelID
C221(D4.D7) = C7⋊C823D4φ: D4.D7/C7⋊C8C2 ⊆ Aut C22224C2^2:1(D4.D7)448,575
C222(D4.D7) = Dic1417D4φ: D4.D7/Dic14C2 ⊆ Aut C22224C2^2:2(D4.D7)448,574
C223(D4.D7) = (C7×D4).31D4φ: D4.D7/C7×D4C2 ⊆ Aut C22112C2^2:3(D4.D7)448,752

Non-split extensions G=N.Q with N=C22 and Q=D4.D7
extensionφ:Q→Aut NdρLabelID
C22.1(D4.D7) = C28.58D8φ: D4.D7/C7⋊C8C2 ⊆ Aut C222244C2^2.1(D4.D7)448,124
C22.2(D4.D7) = (D4×C14)⋊C4φ: D4.D7/Dic14C2 ⊆ Aut C22112C2^2.2(D4.D7)448,94
C22.3(D4.D7) = C4⋊D4.D7φ: D4.D7/Dic14C2 ⊆ Aut C22224C2^2.3(D4.D7)448,568
C22.4(D4.D7) = C4⋊Dic7⋊C4φ: D4.D7/C7×D4C2 ⊆ Aut C22112C2^2.4(D4.D7)448,9
C22.5(D4.D7) = C56.Q8φ: D4.D7/C7×D4C2 ⊆ Aut C221124C2^2.5(D4.D7)448,44
C22.6(D4.D7) = D8.Dic7φ: D4.D7/C7×D4C2 ⊆ Aut C221124C2^2.6(D4.D7)448,120
C22.7(D4.D7) = Q16.Dic7φ: D4.D7/C7×D4C2 ⊆ Aut C222244C2^2.7(D4.D7)448,122
C22.8(D4.D7) = C4⋊C4.231D14φ: D4.D7/C7×D4C2 ⊆ Aut C22224C2^2.8(D4.D7)448,505
C22.9(D4.D7) = C28.C42central extension (φ=1)448C2^2.9(D4.D7)448,86
C22.10(D4.D7) = C2×C4.Dic14central extension (φ=1)448C2^2.10(D4.D7)448,497
C22.11(D4.D7) = C2×C14.Q16central extension (φ=1)448C2^2.11(D4.D7)448,503
C22.12(D4.D7) = C2×D4⋊Dic7central extension (φ=1)224C2^2.12(D4.D7)448,748

׿
×
𝔽