Copied to
clipboard

G = C56.Q8order 448 = 26·7

5th non-split extension by C56 of Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.5Q8, C8.1Dic14, C28.2SD16, C7⋊C161C4, C71(C8.Q8), C8.28(C4×D7), C28.1(C4⋊C4), C56.32(C2×C4), (C2×C28).87D4, C4.Q8.1D7, (C2×C8).40D14, C4.6(Q8⋊D7), C14.2(C4.Q8), C56.C4.4C2, C28.C8.2C2, C4.1(Dic7⋊C4), (C2×C56).46C22, (C2×C14).29SD16, C22.5(D4.D7), C2.3(C4.Dic14), (C7×C4.Q8).1C2, (C2×C4).15(C7⋊D4), SmallGroup(448,44)

Series: Derived Chief Lower central Upper central

C1C56 — C56.Q8
C1C7C14C28C2×C28C2×C56C28.C8 — C56.Q8
C7C14C28C56 — C56.Q8
C1C2C2×C4C2×C8C4.Q8

Generators and relations for C56.Q8
 G = < a,b,c | a56=b4=1, c2=a49b2, bab-1=a43, cac-1=a13, cbc-1=a7b-1 >

2C2
8C4
2C14
4C2×C4
28C8
8C28
2C4⋊C4
7C16
7C16
14M4(2)
4C2×C28
4C7⋊C8
7C8.C4
7M5(2)
2C7×C4⋊C4
2C4.Dic7
7C8.Q8

Smallest permutation representation of C56.Q8
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(2 44)(3 31)(4 18)(6 48)(7 35)(8 22)(10 52)(11 39)(12 26)(14 56)(15 43)(16 30)(19 47)(20 34)(23 51)(24 38)(27 55)(28 42)(32 46)(36 50)(40 54)(57 64 85 92)(58 107 86 79)(59 94 87 66)(60 81 88 109)(61 68 89 96)(62 111 90 83)(63 98 91 70)(65 72 93 100)(67 102 95 74)(69 76 97 104)(71 106 99 78)(73 80 101 108)(75 110 103 82)(77 84 105 112)
(1 106 50 71 43 92 36 57 29 78 22 99 15 64 8 85)(2 63 51 84 44 105 37 70 30 91 23 112 16 77 9 98)(3 76 52 97 45 62 38 83 31 104 24 69 17 90 10 111)(4 89 53 110 46 75 39 96 32 61 25 82 18 103 11 68)(5 102 54 67 47 88 40 109 33 74 26 95 19 60 12 81)(6 59 55 80 48 101 41 66 34 87 27 108 20 73 13 94)(7 72 56 93 49 58 42 79 35 100 28 65 21 86 14 107)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,44)(3,31)(4,18)(6,48)(7,35)(8,22)(10,52)(11,39)(12,26)(14,56)(15,43)(16,30)(19,47)(20,34)(23,51)(24,38)(27,55)(28,42)(32,46)(36,50)(40,54)(57,64,85,92)(58,107,86,79)(59,94,87,66)(60,81,88,109)(61,68,89,96)(62,111,90,83)(63,98,91,70)(65,72,93,100)(67,102,95,74)(69,76,97,104)(71,106,99,78)(73,80,101,108)(75,110,103,82)(77,84,105,112), (1,106,50,71,43,92,36,57,29,78,22,99,15,64,8,85)(2,63,51,84,44,105,37,70,30,91,23,112,16,77,9,98)(3,76,52,97,45,62,38,83,31,104,24,69,17,90,10,111)(4,89,53,110,46,75,39,96,32,61,25,82,18,103,11,68)(5,102,54,67,47,88,40,109,33,74,26,95,19,60,12,81)(6,59,55,80,48,101,41,66,34,87,27,108,20,73,13,94)(7,72,56,93,49,58,42,79,35,100,28,65,21,86,14,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (2,44)(3,31)(4,18)(6,48)(7,35)(8,22)(10,52)(11,39)(12,26)(14,56)(15,43)(16,30)(19,47)(20,34)(23,51)(24,38)(27,55)(28,42)(32,46)(36,50)(40,54)(57,64,85,92)(58,107,86,79)(59,94,87,66)(60,81,88,109)(61,68,89,96)(62,111,90,83)(63,98,91,70)(65,72,93,100)(67,102,95,74)(69,76,97,104)(71,106,99,78)(73,80,101,108)(75,110,103,82)(77,84,105,112), (1,106,50,71,43,92,36,57,29,78,22,99,15,64,8,85)(2,63,51,84,44,105,37,70,30,91,23,112,16,77,9,98)(3,76,52,97,45,62,38,83,31,104,24,69,17,90,10,111)(4,89,53,110,46,75,39,96,32,61,25,82,18,103,11,68)(5,102,54,67,47,88,40,109,33,74,26,95,19,60,12,81)(6,59,55,80,48,101,41,66,34,87,27,108,20,73,13,94)(7,72,56,93,49,58,42,79,35,100,28,65,21,86,14,107) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(2,44),(3,31),(4,18),(6,48),(7,35),(8,22),(10,52),(11,39),(12,26),(14,56),(15,43),(16,30),(19,47),(20,34),(23,51),(24,38),(27,55),(28,42),(32,46),(36,50),(40,54),(57,64,85,92),(58,107,86,79),(59,94,87,66),(60,81,88,109),(61,68,89,96),(62,111,90,83),(63,98,91,70),(65,72,93,100),(67,102,95,74),(69,76,97,104),(71,106,99,78),(73,80,101,108),(75,110,103,82),(77,84,105,112)], [(1,106,50,71,43,92,36,57,29,78,22,99,15,64,8,85),(2,63,51,84,44,105,37,70,30,91,23,112,16,77,9,98),(3,76,52,97,45,62,38,83,31,104,24,69,17,90,10,111),(4,89,53,110,46,75,39,96,32,61,25,82,18,103,11,68),(5,102,54,67,47,88,40,109,33,74,26,95,19,60,12,81),(6,59,55,80,48,101,41,66,34,87,27,108,20,73,13,94),(7,72,56,93,49,58,42,79,35,100,28,65,21,86,14,107)]])

58 conjugacy classes

class 1 2A2B4A4B4C4D7A7B7C8A8B8C8D8E14A···14I16A16B16C16D28A···28F28G···28R56A···56L
order12244447778888814···141616161628···2828···2856···56
size112228822222456562···2282828284···48···84···4

58 irreducible representations

dim111112222222224444
type++++-+++-+-
imageC1C2C2C2C4Q8D4D7SD16SD16D14Dic14C4×D7C7⋊D4C8.Q8Q8⋊D7D4.D7C56.Q8
kernelC56.Q8C28.C8C56.C4C7×C4.Q8C7⋊C16C56C2×C28C4.Q8C28C2×C14C2×C8C8C8C2×C4C7C4C22C1
# reps1111411322366623312

Matrix representation of C56.Q8 in GL4(𝔽113) generated by

05934107
11069696
007749
001090
,
1908337
01122953
0004
00280
,
89100317
280024
8217930
2680558
G:=sub<GL(4,GF(113))| [0,110,0,0,59,69,0,0,34,69,77,109,107,6,49,0],[1,0,0,0,90,112,0,0,83,29,0,28,37,53,4,0],[89,28,8,26,100,0,21,80,3,0,79,5,17,24,30,58] >;

C56.Q8 in GAP, Magma, Sage, TeX

C_{56}.Q_8
% in TeX

G:=Group("C56.Q8");
// GroupNames label

G:=SmallGroup(448,44);
// by ID

G=gap.SmallGroup(448,44);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,365,36,758,346,80,851,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^4=1,c^2=a^49*b^2,b*a*b^-1=a^43,c*a*c^-1=a^13,c*b*c^-1=a^7*b^-1>;
// generators/relations

Export

Subgroup lattice of C56.Q8 in TeX

׿
×
𝔽