Extensions 1→N→G→Q→1 with N=C8 and Q=Dic14

Direct product G=N×Q with N=C8 and Q=Dic14
dρLabelID
C8×Dic14448C8xDic14448,212

Semidirect products G=N:Q with N=C8 and Q=Dic14
extensionφ:Q→Aut NdρLabelID
C81Dic14 = C8⋊Dic14φ: Dic14/C14C22 ⊆ Aut C8448C8:1Dic14448,236
C82Dic14 = C563Q8φ: Dic14/C14C22 ⊆ Aut C8448C8:2Dic14448,390
C83Dic14 = C564Q8φ: Dic14/C14C22 ⊆ Aut C8448C8:3Dic14448,410
C84Dic14 = C562Q8φ: Dic14/Dic7C2 ⊆ Aut C8448C8:4Dic14448,408
C85Dic14 = C565Q8φ: Dic14/Dic7C2 ⊆ Aut C8448C8:5Dic14448,389
C86Dic14 = C56⋊Q8φ: Dic14/Dic7C2 ⊆ Aut C8448C8:6Dic14448,235
C87Dic14 = C568Q8φ: Dic14/C28C2 ⊆ Aut C8448C8:7Dic14448,216
C88Dic14 = C569Q8φ: Dic14/C28C2 ⊆ Aut C8448C8:8Dic14448,214
C89Dic14 = C5611Q8φ: Dic14/C28C2 ⊆ Aut C8448C8:9Dic14448,213

Non-split extensions G=N.Q with N=C8 and Q=Dic14
extensionφ:Q→Aut NdρLabelID
C8.1Dic14 = C56.Q8φ: Dic14/C14C22 ⊆ Aut C81124C8.1Dic14448,44
C8.2Dic14 = C8.Dic14φ: Dic14/C14C22 ⊆ Aut C81124C8.2Dic14448,51
C8.3Dic14 = C16⋊Dic7φ: Dic14/C14C22 ⊆ Aut C81124C8.3Dic14448,70
C8.4Dic14 = C8.4Dic14φ: Dic14/Dic7C2 ⊆ Aut C8448C8.4Dic14448,46
C8.5Dic14 = C8.5Dic14φ: Dic14/Dic7C2 ⊆ Aut C8448C8.5Dic14448,47
C8.6Dic14 = C56.4Q8φ: Dic14/Dic7C2 ⊆ Aut C8448C8.6Dic14448,412
C8.7Dic14 = C8.7Dic14φ: Dic14/Dic7C2 ⊆ Aut C82244C8.7Dic14448,50
C8.8Dic14 = C56.8Q8φ: Dic14/Dic7C2 ⊆ Aut C8448C8.8Dic14448,392
C8.9Dic14 = C56.9Q8φ: Dic14/Dic7C2 ⊆ Aut C81124C8.9Dic14448,68
C8.10Dic14 = C1125C4φ: Dic14/C28C2 ⊆ Aut C8448C8.10Dic14448,61
C8.11Dic14 = C1126C4φ: Dic14/C28C2 ⊆ Aut C8448C8.11Dic14448,62
C8.12Dic14 = C56.13Q8φ: Dic14/C28C2 ⊆ Aut C8448C8.12Dic14448,217
C8.13Dic14 = C112.C4φ: Dic14/C28C2 ⊆ Aut C82242C8.13Dic14448,63
C8.14Dic14 = C56.16Q8φ: Dic14/C28C2 ⊆ Aut C81122C8.14Dic14448,20
C8.15Dic14 = C28⋊C16central extension (φ=1)448C8.15Dic14448,19
C8.16Dic14 = Dic7⋊C16central extension (φ=1)448C8.16Dic14448,58

׿
×
𝔽