Copied to
clipboard

G = C8.Dic14order 448 = 26·7

2nd non-split extension by C8 of Dic14 acting via Dic14/C14=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.6Q8, C8.2Dic14, C28.36SD16, C7⋊C162C4, C72(C8.Q8), C8.29(C4×D7), C28.5(C4⋊C4), C56.33(C2×C4), (C2×C8).42D14, (C2×C28).94D4, C8⋊Dic7.12C2, (C2×C14).3SD16, C14.3(C4.Q8), C8.C4.2D7, C28.C8.4C2, C4.5(Dic7⋊C4), C4.11(D4.D7), C22.2(Q8⋊D7), (C2×C56).153C22, C2.4(C4.Dic14), (C7×C8.C4).3C2, (C2×C4).17(C7⋊D4), SmallGroup(448,51)

Series: Derived Chief Lower central Upper central

C1C56 — C8.Dic14
C1C7C14C28C2×C28C2×C56C28.C8 — C8.Dic14
C7C14C28C56 — C8.Dic14
C1C2C2×C4C2×C8C8.C4

Generators and relations for C8.Dic14
 G = < a,b,c | a8=1, b28=a4, c2=ab14, bab-1=a-1, cac-1=a5, cbc-1=a-1b27 >

2C2
56C4
2C14
4C8
28C2×C4
8Dic7
2M4(2)
7C16
7C16
14C4⋊C4
4C56
4C2×Dic7
7C4.Q8
7M5(2)
2C7×M4(2)
2C4⋊Dic7
7C8.Q8

Smallest permutation representation of C8.Dic14
On 112 points
Generators in S112
(1 110 43 96 29 82 15 68)(2 69 16 83 30 97 44 111)(3 112 45 98 31 84 17 70)(4 71 18 85 32 99 46 57)(5 58 47 100 33 86 19 72)(6 73 20 87 34 101 48 59)(7 60 49 102 35 88 21 74)(8 75 22 89 36 103 50 61)(9 62 51 104 37 90 23 76)(10 77 24 91 38 105 52 63)(11 64 53 106 39 92 25 78)(12 79 26 93 40 107 54 65)(13 66 55 108 41 94 27 80)(14 81 28 95 42 109 56 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 22 68 103 15 8 82 89 29 50 96 75 43 36 110 61)(2 88 83 35 44 102 69 49 30 60 111 7 16 74 97 21)(3 20 70 101 17 6 84 87 31 48 98 73 45 34 112 59)(4 86 85 33 46 100 71 47 32 58 57 5 18 72 99 19)(9 14 76 95 23 56 90 81 37 42 104 67 51 28 62 109)(10 80 91 27 52 94 77 41 38 108 63 55 24 66 105 13)(11 12 78 93 25 54 92 79 39 40 106 65 53 26 64 107)

G:=sub<Sym(112)| (1,110,43,96,29,82,15,68)(2,69,16,83,30,97,44,111)(3,112,45,98,31,84,17,70)(4,71,18,85,32,99,46,57)(5,58,47,100,33,86,19,72)(6,73,20,87,34,101,48,59)(7,60,49,102,35,88,21,74)(8,75,22,89,36,103,50,61)(9,62,51,104,37,90,23,76)(10,77,24,91,38,105,52,63)(11,64,53,106,39,92,25,78)(12,79,26,93,40,107,54,65)(13,66,55,108,41,94,27,80)(14,81,28,95,42,109,56,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,22,68,103,15,8,82,89,29,50,96,75,43,36,110,61)(2,88,83,35,44,102,69,49,30,60,111,7,16,74,97,21)(3,20,70,101,17,6,84,87,31,48,98,73,45,34,112,59)(4,86,85,33,46,100,71,47,32,58,57,5,18,72,99,19)(9,14,76,95,23,56,90,81,37,42,104,67,51,28,62,109)(10,80,91,27,52,94,77,41,38,108,63,55,24,66,105,13)(11,12,78,93,25,54,92,79,39,40,106,65,53,26,64,107)>;

G:=Group( (1,110,43,96,29,82,15,68)(2,69,16,83,30,97,44,111)(3,112,45,98,31,84,17,70)(4,71,18,85,32,99,46,57)(5,58,47,100,33,86,19,72)(6,73,20,87,34,101,48,59)(7,60,49,102,35,88,21,74)(8,75,22,89,36,103,50,61)(9,62,51,104,37,90,23,76)(10,77,24,91,38,105,52,63)(11,64,53,106,39,92,25,78)(12,79,26,93,40,107,54,65)(13,66,55,108,41,94,27,80)(14,81,28,95,42,109,56,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,22,68,103,15,8,82,89,29,50,96,75,43,36,110,61)(2,88,83,35,44,102,69,49,30,60,111,7,16,74,97,21)(3,20,70,101,17,6,84,87,31,48,98,73,45,34,112,59)(4,86,85,33,46,100,71,47,32,58,57,5,18,72,99,19)(9,14,76,95,23,56,90,81,37,42,104,67,51,28,62,109)(10,80,91,27,52,94,77,41,38,108,63,55,24,66,105,13)(11,12,78,93,25,54,92,79,39,40,106,65,53,26,64,107) );

G=PermutationGroup([[(1,110,43,96,29,82,15,68),(2,69,16,83,30,97,44,111),(3,112,45,98,31,84,17,70),(4,71,18,85,32,99,46,57),(5,58,47,100,33,86,19,72),(6,73,20,87,34,101,48,59),(7,60,49,102,35,88,21,74),(8,75,22,89,36,103,50,61),(9,62,51,104,37,90,23,76),(10,77,24,91,38,105,52,63),(11,64,53,106,39,92,25,78),(12,79,26,93,40,107,54,65),(13,66,55,108,41,94,27,80),(14,81,28,95,42,109,56,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,22,68,103,15,8,82,89,29,50,96,75,43,36,110,61),(2,88,83,35,44,102,69,49,30,60,111,7,16,74,97,21),(3,20,70,101,17,6,84,87,31,48,98,73,45,34,112,59),(4,86,85,33,46,100,71,47,32,58,57,5,18,72,99,19),(9,14,76,95,23,56,90,81,37,42,104,67,51,28,62,109),(10,80,91,27,52,94,77,41,38,108,63,55,24,66,105,13),(11,12,78,93,25,54,92,79,39,40,106,65,53,26,64,107)]])

58 conjugacy classes

class 1 2A2B4A4B4C4D7A7B7C8A8B8C8D8E14A14B14C14D14E14F16A16B16C16D28A···28F28G28H28I56A···56L56M···56X
order1224444777888881414141414141616161628···2828282856···5656···56
size11222565622222488222444282828282···24444···48···8

58 irreducible representations

dim111112222222224444
type++++-+++--+
imageC1C2C2C2C4Q8D4D7SD16SD16D14Dic14C4×D7C7⋊D4C8.Q8D4.D7Q8⋊D7C8.Dic14
kernelC8.Dic14C28.C8C8⋊Dic7C7×C8.C4C7⋊C16C56C2×C28C8.C4C28C2×C14C2×C8C8C8C2×C4C7C4C22C1
# reps1111411322366623312

Matrix representation of C8.Dic14 in GL6(𝔽113)

11200000
01120000
00261600
00106000
00701710013
002717100100
,
0980000
15580000
001030360
00001121
0038112100
00820100
,
11200000
3410000
00009716
00430260
00911129617
009109617

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,26,106,70,27,0,0,16,0,17,17,0,0,0,0,100,100,0,0,0,0,13,100],[0,15,0,0,0,0,98,58,0,0,0,0,0,0,103,0,38,82,0,0,0,0,112,0,0,0,36,112,10,10,0,0,0,1,0,0],[112,34,0,0,0,0,0,1,0,0,0,0,0,0,0,43,91,91,0,0,0,0,112,0,0,0,97,26,96,96,0,0,16,0,17,17] >;

C8.Dic14 in GAP, Magma, Sage, TeX

C_8.{\rm Dic}_{14}
% in TeX

G:=Group("C8.Dic14");
// GroupNames label

G:=SmallGroup(448,51);
// by ID

G=gap.SmallGroup(448,51);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,365,36,758,184,346,80,851,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^8=1,b^28=a^4,c^2=a*b^14,b*a*b^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^-1*b^27>;
// generators/relations

Export

Subgroup lattice of C8.Dic14 in TeX

׿
×
𝔽