extension | φ:Q→Aut N | d | ρ | Label | ID |
C8.1(C2×Dic7) = D8.Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C8 | 112 | 4 | C8.1(C2xDic7) | 448,120 |
C8.2(C2×Dic7) = Q16.Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C8 | 224 | 4 | C8.2(C2xDic7) | 448,122 |
C8.3(C2×Dic7) = D8⋊2Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C8 | 112 | 4 | C8.3(C2xDic7) | 448,123 |
C8.4(C2×Dic7) = M4(2).Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C8 | 112 | 4 | C8.4(C2xDic7) | 448,659 |
C8.5(C2×Dic7) = Q16⋊Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C8 | 448 | | C8.5(C2xDic7) | 448,718 |
C8.6(C2×Dic7) = D8⋊4Dic7 | φ: C2×Dic7/C14 → C22 ⊆ Aut C8 | 112 | 4 | C8.6(C2xDic7) | 448,731 |
C8.7(C2×Dic7) = C14.SD32 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C8 | 224 | | C8.7(C2xDic7) | 448,119 |
C8.8(C2×Dic7) = C14.Q32 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C8 | 448 | | C8.8(C2xDic7) | 448,121 |
C8.9(C2×Dic7) = C28.58D8 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C8 | 224 | 4 | C8.9(C2xDic7) | 448,124 |
C8.10(C2×Dic7) = Q16×Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C8 | 448 | | C8.10(C2xDic7) | 448,717 |
C8.11(C2×Dic7) = D8⋊5Dic7 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C8 | 112 | 4 | C8.11(C2xDic7) | 448,730 |
C8.12(C2×Dic7) = C28.7C42 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C8 | 224 | | C8.12(C2xDic7) | 448,656 |
C8.13(C2×Dic7) = C56.70C23 | φ: C2×Dic7/Dic7 → C2 ⊆ Aut C8 | 224 | 4 | C8.13(C2xDic7) | 448,674 |
C8.14(C2×Dic7) = C112⋊5C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C8 | 448 | | C8.14(C2xDic7) | 448,61 |
C8.15(C2×Dic7) = C112⋊6C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C8 | 448 | | C8.15(C2xDic7) | 448,62 |
C8.16(C2×Dic7) = C112.C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C8 | 224 | 2 | C8.16(C2xDic7) | 448,63 |
C8.17(C2×Dic7) = C23.22D28 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C8 | 224 | | C8.17(C2xDic7) | 448,640 |
C8.18(C2×Dic7) = C16⋊Dic7 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C8 | 112 | 4 | C8.18(C2xDic7) | 448,70 |
C8.19(C2×Dic7) = C2×C56.C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C8 | 224 | | C8.19(C2xDic7) | 448,641 |
C8.20(C2×Dic7) = C112⋊C4 | φ: C2×Dic7/C2×C14 → C2 ⊆ Aut C8 | 112 | 4 | C8.20(C2xDic7) | 448,69 |
C8.21(C2×Dic7) = C2×C7⋊C32 | central extension (φ=1) | 448 | | C8.21(C2xDic7) | 448,55 |
C8.22(C2×Dic7) = C7⋊M6(2) | central extension (φ=1) | 224 | 2 | C8.22(C2xDic7) | 448,56 |
C8.23(C2×Dic7) = C16×Dic7 | central extension (φ=1) | 448 | | C8.23(C2xDic7) | 448,57 |
C8.24(C2×Dic7) = C112⋊9C4 | central extension (φ=1) | 448 | | C8.24(C2xDic7) | 448,59 |
C8.25(C2×Dic7) = C22×C7⋊C16 | central extension (φ=1) | 448 | | C8.25(C2xDic7) | 448,630 |
C8.26(C2×Dic7) = C2×C28.C8 | central extension (φ=1) | 224 | | C8.26(C2xDic7) | 448,631 |
C8.27(C2×Dic7) = C28.12C42 | central extension (φ=1) | 224 | | C8.27(C2xDic7) | 448,635 |