Extensions 1→N→G→Q→1 with N=C8 and Q=C2×Dic7

Direct product G=N×Q with N=C8 and Q=C2×Dic7
dρLabelID
C2×C8×Dic7448C2xC8xDic7448,632

Semidirect products G=N:Q with N=C8 and Q=C2×Dic7
extensionφ:Q→Aut NdρLabelID
C81(C2×Dic7) = C23.47D28φ: C2×Dic7/C14C22 ⊆ Aut C8224C8:1(C2xDic7)448,655
C82(C2×Dic7) = D8⋊Dic7φ: C2×Dic7/C14C22 ⊆ Aut C8224C8:2(C2xDic7)448,686
C83(C2×Dic7) = SD16⋊Dic7φ: C2×Dic7/C14C22 ⊆ Aut C8224C8:3(C2xDic7)448,698
C84(C2×Dic7) = D8×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C8224C8:4(C2xDic7)448,683
C85(C2×Dic7) = SD16×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C8224C8:5(C2xDic7)448,695
C86(C2×Dic7) = M4(2)×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C8224C8:6(C2xDic7)448,651
C87(C2×Dic7) = C2×C561C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C8448C8:7(C2xDic7)448,639
C88(C2×Dic7) = C2×C8⋊Dic7φ: C2×Dic7/C2×C14C2 ⊆ Aut C8448C8:8(C2xDic7)448,638
C89(C2×Dic7) = C2×C56⋊C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C8448C8:9(C2xDic7)448,634

Non-split extensions G=N.Q with N=C8 and Q=C2×Dic7
extensionφ:Q→Aut NdρLabelID
C8.1(C2×Dic7) = D8.Dic7φ: C2×Dic7/C14C22 ⊆ Aut C81124C8.1(C2xDic7)448,120
C8.2(C2×Dic7) = Q16.Dic7φ: C2×Dic7/C14C22 ⊆ Aut C82244C8.2(C2xDic7)448,122
C8.3(C2×Dic7) = D82Dic7φ: C2×Dic7/C14C22 ⊆ Aut C81124C8.3(C2xDic7)448,123
C8.4(C2×Dic7) = M4(2).Dic7φ: C2×Dic7/C14C22 ⊆ Aut C81124C8.4(C2xDic7)448,659
C8.5(C2×Dic7) = Q16⋊Dic7φ: C2×Dic7/C14C22 ⊆ Aut C8448C8.5(C2xDic7)448,718
C8.6(C2×Dic7) = D84Dic7φ: C2×Dic7/C14C22 ⊆ Aut C81124C8.6(C2xDic7)448,731
C8.7(C2×Dic7) = C14.SD32φ: C2×Dic7/Dic7C2 ⊆ Aut C8224C8.7(C2xDic7)448,119
C8.8(C2×Dic7) = C14.Q32φ: C2×Dic7/Dic7C2 ⊆ Aut C8448C8.8(C2xDic7)448,121
C8.9(C2×Dic7) = C28.58D8φ: C2×Dic7/Dic7C2 ⊆ Aut C82244C8.9(C2xDic7)448,124
C8.10(C2×Dic7) = Q16×Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C8448C8.10(C2xDic7)448,717
C8.11(C2×Dic7) = D85Dic7φ: C2×Dic7/Dic7C2 ⊆ Aut C81124C8.11(C2xDic7)448,730
C8.12(C2×Dic7) = C28.7C42φ: C2×Dic7/Dic7C2 ⊆ Aut C8224C8.12(C2xDic7)448,656
C8.13(C2×Dic7) = C56.70C23φ: C2×Dic7/Dic7C2 ⊆ Aut C82244C8.13(C2xDic7)448,674
C8.14(C2×Dic7) = C1125C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C8448C8.14(C2xDic7)448,61
C8.15(C2×Dic7) = C1126C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C8448C8.15(C2xDic7)448,62
C8.16(C2×Dic7) = C112.C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C82242C8.16(C2xDic7)448,63
C8.17(C2×Dic7) = C23.22D28φ: C2×Dic7/C2×C14C2 ⊆ Aut C8224C8.17(C2xDic7)448,640
C8.18(C2×Dic7) = C16⋊Dic7φ: C2×Dic7/C2×C14C2 ⊆ Aut C81124C8.18(C2xDic7)448,70
C8.19(C2×Dic7) = C2×C56.C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C8224C8.19(C2xDic7)448,641
C8.20(C2×Dic7) = C112⋊C4φ: C2×Dic7/C2×C14C2 ⊆ Aut C81124C8.20(C2xDic7)448,69
C8.21(C2×Dic7) = C2×C7⋊C32central extension (φ=1)448C8.21(C2xDic7)448,55
C8.22(C2×Dic7) = C7⋊M6(2)central extension (φ=1)2242C8.22(C2xDic7)448,56
C8.23(C2×Dic7) = C16×Dic7central extension (φ=1)448C8.23(C2xDic7)448,57
C8.24(C2×Dic7) = C1129C4central extension (φ=1)448C8.24(C2xDic7)448,59
C8.25(C2×Dic7) = C22×C7⋊C16central extension (φ=1)448C8.25(C2xDic7)448,630
C8.26(C2×Dic7) = C2×C28.C8central extension (φ=1)224C8.26(C2xDic7)448,631
C8.27(C2×Dic7) = C28.12C42central extension (φ=1)224C8.27(C2xDic7)448,635

׿
×
𝔽