Copied to
clipboard

G = C2xC19:A4order 456 = 23·3·19

Direct product of C2 and C19:A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C2xC19:A4, C38:A4, C19:2(C2xA4), C23:(C19:C3), (C2xC38):7C6, (C22xC38):3C3, C22:(C2xC19:C3), SmallGroup(456,50)

Series: Derived Chief Lower central Upper central

C1C2xC38 — C2xC19:A4
C1C19C2xC38C19:A4 — C2xC19:A4
C2xC38 — C2xC19:A4
C1C2

Generators and relations for C2xC19:A4
 G = < a,b,c,d,e | a2=b19=c2=d2=e3=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=b11, ece-1=cd=dc, ede-1=c >

Subgroups: 232 in 24 conjugacy classes, 10 normal (all characteristic)
Quotients: C1, C2, C3, C6, A4, C2xA4, C19:C3, C2xC19:C3, C19:A4, C2xC19:A4
3C2
3C2
76C3
3C22
3C22
76C6
3C38
3C38
4C19:C3
19A4
3C2xC38
3C2xC38
4C2xC19:C3
19C2xA4

Smallest permutation representation of C2xC19:A4
On 114 points
Generators in S114
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(39 64)(40 65)(41 66)(42 67)(43 68)(44 69)(45 70)(46 71)(47 72)(48 73)(49 74)(50 75)(51 76)(52 58)(53 59)(54 60)(55 61)(56 62)(57 63)(77 100)(78 101)(79 102)(80 103)(81 104)(82 105)(83 106)(84 107)(85 108)(86 109)(87 110)(88 111)(89 112)(90 113)(91 114)(92 96)(93 97)(94 98)(95 99)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(39 64)(40 65)(41 66)(42 67)(43 68)(44 69)(45 70)(46 71)(47 72)(48 73)(49 74)(50 75)(51 76)(52 58)(53 59)(54 60)(55 61)(56 62)(57 63)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(77 100)(78 101)(79 102)(80 103)(81 104)(82 105)(83 106)(84 107)(85 108)(86 109)(87 110)(88 111)(89 112)(90 113)(91 114)(92 96)(93 97)(94 98)(95 99)
(1 92 43)(2 80 54)(3 87 46)(4 94 57)(5 82 49)(6 89 41)(7 77 52)(8 84 44)(9 91 55)(10 79 47)(11 86 39)(12 93 50)(13 81 42)(14 88 53)(15 95 45)(16 83 56)(17 90 48)(18 78 40)(19 85 51)(20 96 68)(21 103 60)(22 110 71)(23 98 63)(24 105 74)(25 112 66)(26 100 58)(27 107 69)(28 114 61)(29 102 72)(30 109 64)(31 97 75)(32 104 67)(33 111 59)(34 99 70)(35 106 62)(36 113 73)(37 101 65)(38 108 76)

G:=sub<Sym(114)| (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,64)(40,65)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,58)(53,59)(54,60)(55,61)(56,62)(57,63)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,96)(93,97)(94,98)(95,99), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,64)(40,65)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,58)(53,59)(54,60)(55,61)(56,62)(57,63), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,96)(93,97)(94,98)(95,99), (1,92,43)(2,80,54)(3,87,46)(4,94,57)(5,82,49)(6,89,41)(7,77,52)(8,84,44)(9,91,55)(10,79,47)(11,86,39)(12,93,50)(13,81,42)(14,88,53)(15,95,45)(16,83,56)(17,90,48)(18,78,40)(19,85,51)(20,96,68)(21,103,60)(22,110,71)(23,98,63)(24,105,74)(25,112,66)(26,100,58)(27,107,69)(28,114,61)(29,102,72)(30,109,64)(31,97,75)(32,104,67)(33,111,59)(34,99,70)(35,106,62)(36,113,73)(37,101,65)(38,108,76)>;

G:=Group( (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,64)(40,65)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,58)(53,59)(54,60)(55,61)(56,62)(57,63)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,96)(93,97)(94,98)(95,99), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(39,64)(40,65)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,58)(53,59)(54,60)(55,61)(56,62)(57,63), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111)(89,112)(90,113)(91,114)(92,96)(93,97)(94,98)(95,99), (1,92,43)(2,80,54)(3,87,46)(4,94,57)(5,82,49)(6,89,41)(7,77,52)(8,84,44)(9,91,55)(10,79,47)(11,86,39)(12,93,50)(13,81,42)(14,88,53)(15,95,45)(16,83,56)(17,90,48)(18,78,40)(19,85,51)(20,96,68)(21,103,60)(22,110,71)(23,98,63)(24,105,74)(25,112,66)(26,100,58)(27,107,69)(28,114,61)(29,102,72)(30,109,64)(31,97,75)(32,104,67)(33,111,59)(34,99,70)(35,106,62)(36,113,73)(37,101,65)(38,108,76) );

G=PermutationGroup([[(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(39,64),(40,65),(41,66),(42,67),(43,68),(44,69),(45,70),(46,71),(47,72),(48,73),(49,74),(50,75),(51,76),(52,58),(53,59),(54,60),(55,61),(56,62),(57,63),(77,100),(78,101),(79,102),(80,103),(81,104),(82,105),(83,106),(84,107),(85,108),(86,109),(87,110),(88,111),(89,112),(90,113),(91,114),(92,96),(93,97),(94,98),(95,99)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(39,64),(40,65),(41,66),(42,67),(43,68),(44,69),(45,70),(46,71),(47,72),(48,73),(49,74),(50,75),(51,76),(52,58),(53,59),(54,60),(55,61),(56,62),(57,63)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(77,100),(78,101),(79,102),(80,103),(81,104),(82,105),(83,106),(84,107),(85,108),(86,109),(87,110),(88,111),(89,112),(90,113),(91,114),(92,96),(93,97),(94,98),(95,99)], [(1,92,43),(2,80,54),(3,87,46),(4,94,57),(5,82,49),(6,89,41),(7,77,52),(8,84,44),(9,91,55),(10,79,47),(11,86,39),(12,93,50),(13,81,42),(14,88,53),(15,95,45),(16,83,56),(17,90,48),(18,78,40),(19,85,51),(20,96,68),(21,103,60),(22,110,71),(23,98,63),(24,105,74),(25,112,66),(26,100,58),(27,107,69),(28,114,61),(29,102,72),(30,109,64),(31,97,75),(32,104,67),(33,111,59),(34,99,70),(35,106,62),(36,113,73),(37,101,65),(38,108,76)]])

56 conjugacy classes

class 1 2A2B2C3A3B6A6B19A···19F38A···38AP
order1222336619···1938···38
size1133767676763···33···3

56 irreducible representations

dim1111333333
type++++
imageC1C2C3C6A4C2xA4C19:C3C2xC19:C3C19:A4C2xC19:A4
kernelC2xC19:A4C19:A4C22xC38C2xC38C38C19C23C22C2C1
# reps112211661818

Matrix representation of C2xC19:A4 in GL3(F229) generated by

22800
02280
00228
,
441156
0170
00214
,
2280124
02280
001
,
2282120
010
00228
,
107115113
001
13183122
G:=sub<GL(3,GF(229))| [228,0,0,0,228,0,0,0,228],[44,0,0,115,17,0,6,0,214],[228,0,0,0,228,0,124,0,1],[228,0,0,212,1,0,0,0,228],[107,0,131,115,0,83,113,1,122] >;

C2xC19:A4 in GAP, Magma, Sage, TeX

C_2\times C_{19}\rtimes A_4
% in TeX

G:=Group("C2xC19:A4");
// GroupNames label

G:=SmallGroup(456,50);
// by ID

G=gap.SmallGroup(456,50);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-19,97,188,2109]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^19=c^2=d^2=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^11,e*c*e^-1=c*d=d*c,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of C2xC19:A4 in TeX

׿
x
:
Z
F
o
wr
Q
<