Extensions 1→N→G→Q→1 with N=C2×C6×F5 and Q=C2

Direct product G=N×Q with N=C2×C6×F5 and Q=C2
dρLabelID
F5×C22×C6120F5xC2^2xC6480,1205

Semidirect products G=N:Q with N=C2×C6×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C6×F5)⋊1C2 = C2×D6⋊F5φ: C2/C1C2 ⊆ Out C2×C6×F5120(C2xC6xF5):1C2480,1000
(C2×C6×F5)⋊2C2 = F5×C3⋊D4φ: C2/C1C2 ⊆ Out C2×C6×F5608(C2xC6xF5):2C2480,1010
(C2×C6×F5)⋊3C2 = C22×S3×F5φ: C2/C1C2 ⊆ Out C2×C6×F560(C2xC6xF5):3C2480,1197
(C2×C6×F5)⋊4C2 = C3×D4×F5φ: C2/C1C2 ⊆ Out C2×C6×F5608(C2xC6xF5):4C2480,1054
(C2×C6×F5)⋊5C2 = C6×C22⋊F5φ: C2/C1C2 ⊆ Out C2×C6×F5120(C2xC6xF5):5C2480,1059

Non-split extensions G=N.Q with N=C2×C6×F5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C6×F5).1C2 = D10.20D12φ: C2/C1C2 ⊆ Out C2×C6×F5120(C2xC6xF5).1C2480,243
(C2×C6×F5).2C2 = C2×Dic3×F5φ: C2/C1C2 ⊆ Out C2×C6×F5120(C2xC6xF5).2C2480,998
(C2×C6×F5).3C2 = C2×Dic3⋊F5φ: C2/C1C2 ⊆ Out C2×C6×F5120(C2xC6xF5).3C2480,1001
(C2×C6×F5).4C2 = C3×D10.3Q8φ: C2/C1C2 ⊆ Out C2×C6×F5120(C2xC6xF5).4C2480,286
(C2×C6×F5).5C2 = C6×C4⋊F5φ: C2/C1C2 ⊆ Out C2×C6×F5120(C2xC6xF5).5C2480,1051
(C2×C6×F5).6C2 = F5×C2×C12φ: trivial image120(C2xC6xF5).6C2480,1050

׿
×
𝔽