Copied to
clipboard

G = C3×D10.3Q8order 480 = 25·3·5

Direct product of C3 and D10.3Q8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D10.3Q8, C30.17C42, (C2×F5)⋊C12, (C2×C60)⋊5C4, (C6×F5)⋊3C4, (C2×C12)⋊3F5, (C2×C20)⋊2C12, C6.17(C4×F5), C2.5(C12×F5), C10.5(C4×C12), (C6×D5).79D4, C6.21(C4⋊F5), C30.21(C4⋊C4), (C6×D5).13Q8, D10.3(C3×Q8), (C6×Dic5)⋊16C4, (C2×Dic5)⋊6C12, D10.17(C3×D4), D10.7(C2×C12), (C22×F5).1C6, C22.13(C6×F5), C6.30(C22⋊F5), C30.30(C22⋊C4), C153(C2.C42), D5.(C3×C4⋊C4), (C2×C4)⋊2(C3×F5), (C2×C4×D5).8C6, C2.3(C3×C4⋊F5), (C2×C6×F5).4C2, C10.7(C3×C4⋊C4), C5⋊(C3×C2.C42), D5.(C3×C22⋊C4), (D5×C2×C12).23C2, (C2×C6).56(C2×F5), (C2×C30).52(C2×C4), (C2×C10).9(C2×C12), C2.2(C3×C22⋊F5), (C3×D5).3(C4⋊C4), (C6×D5).45(C2×C4), C10.4(C3×C22⋊C4), (D5×C2×C6).148C22, (C3×D5).3(C22⋊C4), (C22×D5).37(C2×C6), SmallGroup(480,286)

Series: Derived Chief Lower central Upper central

C1C10 — C3×D10.3Q8
C1C5C10C2×C10C22×D5D5×C2×C6C2×C6×F5 — C3×D10.3Q8
C5C10 — C3×D10.3Q8
C1C2×C6C2×C12

Generators and relations for C3×D10.3Q8
 G = < a,b,c,d,e | a3=b10=c2=d4=1, e2=b4cd2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe-1=b3, cd=dc, ece-1=b2c, ede-1=b5d-1 >

Subgroups: 536 in 152 conjugacy classes, 64 normal (36 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C2×C4, C23, D5, C10, C12, C2×C6, C2×C6, C15, C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C2×C12, C2×C12, C22×C6, C3×D5, C30, C2.C42, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C22×C12, C3×Dic5, C60, C3×F5, C6×D5, C6×D5, C2×C30, C2×C4×D5, C22×F5, C3×C2.C42, D5×C12, C6×Dic5, C2×C60, C6×F5, C6×F5, D5×C2×C6, D10.3Q8, D5×C2×C12, C2×C6×F5, C3×D10.3Q8
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C42, C22⋊C4, C4⋊C4, F5, C2×C12, C3×D4, C3×Q8, C2.C42, C2×F5, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C3×F5, C4×F5, C4⋊F5, C22⋊F5, C3×C2.C42, C6×F5, D10.3Q8, C12×F5, C3×C4⋊F5, C3×C22⋊F5, C3×D10.3Q8

Smallest permutation representation of C3×D10.3Q8
On 120 points
Generators in S120
(1 70 50)(2 61 41)(3 62 42)(4 63 43)(5 64 44)(6 65 45)(7 66 46)(8 67 47)(9 68 48)(10 69 49)(11 105 85)(12 106 86)(13 107 87)(14 108 88)(15 109 89)(16 110 90)(17 101 81)(18 102 82)(19 103 83)(20 104 84)(21 57 37)(22 58 38)(23 59 39)(24 60 40)(25 51 31)(26 52 32)(27 53 33)(28 54 34)(29 55 35)(30 56 36)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 30)(7 29)(8 28)(9 27)(10 26)(11 116)(12 115)(13 114)(14 113)(15 112)(16 111)(17 120)(18 119)(19 118)(20 117)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(40 41)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)(57 64)(58 63)(59 62)(60 61)(71 90)(72 89)(73 88)(74 87)(75 86)(76 85)(77 84)(78 83)(79 82)(80 81)(91 110)(92 109)(93 108)(94 107)(95 106)(96 105)(97 104)(98 103)(99 102)(100 101)
(1 77 21 90)(2 78 22 81)(3 79 23 82)(4 80 24 83)(5 71 25 84)(6 72 26 85)(7 73 27 86)(8 74 28 87)(9 75 29 88)(10 76 30 89)(11 65 112 52)(12 66 113 53)(13 67 114 54)(14 68 115 55)(15 69 116 56)(16 70 117 57)(17 61 118 58)(18 62 119 59)(19 63 120 60)(20 64 111 51)(31 104 44 91)(32 105 45 92)(33 106 46 93)(34 107 47 94)(35 108 48 95)(36 109 49 96)(37 110 50 97)(38 101 41 98)(39 102 42 99)(40 103 43 100)
(2 8 10 4)(3 5 9 7)(11 117)(12 114 20 120)(13 111 19 113)(14 118 18 116)(15 115 17 119)(16 112)(22 28 30 24)(23 25 29 27)(31 35 33 39)(34 36 40 38)(41 47 49 43)(42 44 48 46)(51 55 53 59)(54 56 60 58)(61 67 69 63)(62 64 68 66)(71 83 73 87)(72 90)(74 84 80 86)(75 81 79 89)(76 88 78 82)(77 85)(91 103 93 107)(92 110)(94 104 100 106)(95 101 99 109)(96 108 98 102)(97 105)

G:=sub<Sym(120)| (1,70,50)(2,61,41)(3,62,42)(4,63,43)(5,64,44)(6,65,45)(7,66,46)(8,67,47)(9,68,48)(10,69,49)(11,105,85)(12,106,86)(13,107,87)(14,108,88)(15,109,89)(16,110,90)(17,101,81)(18,102,82)(19,103,83)(20,104,84)(21,57,37)(22,58,38)(23,59,39)(24,60,40)(25,51,31)(26,52,32)(27,53,33)(28,54,34)(29,55,35)(30,56,36)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,116)(12,115)(13,114)(14,113)(15,112)(16,111)(17,120)(18,119)(19,118)(20,117)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(71,90)(72,89)(73,88)(74,87)(75,86)(76,85)(77,84)(78,83)(79,82)(80,81)(91,110)(92,109)(93,108)(94,107)(95,106)(96,105)(97,104)(98,103)(99,102)(100,101), (1,77,21,90)(2,78,22,81)(3,79,23,82)(4,80,24,83)(5,71,25,84)(6,72,26,85)(7,73,27,86)(8,74,28,87)(9,75,29,88)(10,76,30,89)(11,65,112,52)(12,66,113,53)(13,67,114,54)(14,68,115,55)(15,69,116,56)(16,70,117,57)(17,61,118,58)(18,62,119,59)(19,63,120,60)(20,64,111,51)(31,104,44,91)(32,105,45,92)(33,106,46,93)(34,107,47,94)(35,108,48,95)(36,109,49,96)(37,110,50,97)(38,101,41,98)(39,102,42,99)(40,103,43,100), (2,8,10,4)(3,5,9,7)(11,117)(12,114,20,120)(13,111,19,113)(14,118,18,116)(15,115,17,119)(16,112)(22,28,30,24)(23,25,29,27)(31,35,33,39)(34,36,40,38)(41,47,49,43)(42,44,48,46)(51,55,53,59)(54,56,60,58)(61,67,69,63)(62,64,68,66)(71,83,73,87)(72,90)(74,84,80,86)(75,81,79,89)(76,88,78,82)(77,85)(91,103,93,107)(92,110)(94,104,100,106)(95,101,99,109)(96,108,98,102)(97,105)>;

G:=Group( (1,70,50)(2,61,41)(3,62,42)(4,63,43)(5,64,44)(6,65,45)(7,66,46)(8,67,47)(9,68,48)(10,69,49)(11,105,85)(12,106,86)(13,107,87)(14,108,88)(15,109,89)(16,110,90)(17,101,81)(18,102,82)(19,103,83)(20,104,84)(21,57,37)(22,58,38)(23,59,39)(24,60,40)(25,51,31)(26,52,32)(27,53,33)(28,54,34)(29,55,35)(30,56,36)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,116)(12,115)(13,114)(14,113)(15,112)(16,111)(17,120)(18,119)(19,118)(20,117)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(40,41)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65)(57,64)(58,63)(59,62)(60,61)(71,90)(72,89)(73,88)(74,87)(75,86)(76,85)(77,84)(78,83)(79,82)(80,81)(91,110)(92,109)(93,108)(94,107)(95,106)(96,105)(97,104)(98,103)(99,102)(100,101), (1,77,21,90)(2,78,22,81)(3,79,23,82)(4,80,24,83)(5,71,25,84)(6,72,26,85)(7,73,27,86)(8,74,28,87)(9,75,29,88)(10,76,30,89)(11,65,112,52)(12,66,113,53)(13,67,114,54)(14,68,115,55)(15,69,116,56)(16,70,117,57)(17,61,118,58)(18,62,119,59)(19,63,120,60)(20,64,111,51)(31,104,44,91)(32,105,45,92)(33,106,46,93)(34,107,47,94)(35,108,48,95)(36,109,49,96)(37,110,50,97)(38,101,41,98)(39,102,42,99)(40,103,43,100), (2,8,10,4)(3,5,9,7)(11,117)(12,114,20,120)(13,111,19,113)(14,118,18,116)(15,115,17,119)(16,112)(22,28,30,24)(23,25,29,27)(31,35,33,39)(34,36,40,38)(41,47,49,43)(42,44,48,46)(51,55,53,59)(54,56,60,58)(61,67,69,63)(62,64,68,66)(71,83,73,87)(72,90)(74,84,80,86)(75,81,79,89)(76,88,78,82)(77,85)(91,103,93,107)(92,110)(94,104,100,106)(95,101,99,109)(96,108,98,102)(97,105) );

G=PermutationGroup([[(1,70,50),(2,61,41),(3,62,42),(4,63,43),(5,64,44),(6,65,45),(7,66,46),(8,67,47),(9,68,48),(10,69,49),(11,105,85),(12,106,86),(13,107,87),(14,108,88),(15,109,89),(16,110,90),(17,101,81),(18,102,82),(19,103,83),(20,104,84),(21,57,37),(22,58,38),(23,59,39),(24,60,40),(25,51,31),(26,52,32),(27,53,33),(28,54,34),(29,55,35),(30,56,36),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,30),(7,29),(8,28),(9,27),(10,26),(11,116),(12,115),(13,114),(14,113),(15,112),(16,111),(17,120),(18,119),(19,118),(20,117),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(40,41),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65),(57,64),(58,63),(59,62),(60,61),(71,90),(72,89),(73,88),(74,87),(75,86),(76,85),(77,84),(78,83),(79,82),(80,81),(91,110),(92,109),(93,108),(94,107),(95,106),(96,105),(97,104),(98,103),(99,102),(100,101)], [(1,77,21,90),(2,78,22,81),(3,79,23,82),(4,80,24,83),(5,71,25,84),(6,72,26,85),(7,73,27,86),(8,74,28,87),(9,75,29,88),(10,76,30,89),(11,65,112,52),(12,66,113,53),(13,67,114,54),(14,68,115,55),(15,69,116,56),(16,70,117,57),(17,61,118,58),(18,62,119,59),(19,63,120,60),(20,64,111,51),(31,104,44,91),(32,105,45,92),(33,106,46,93),(34,107,47,94),(35,108,48,95),(36,109,49,96),(37,110,50,97),(38,101,41,98),(39,102,42,99),(40,103,43,100)], [(2,8,10,4),(3,5,9,7),(11,117),(12,114,20,120),(13,111,19,113),(14,118,18,116),(15,115,17,119),(16,112),(22,28,30,24),(23,25,29,27),(31,35,33,39),(34,36,40,38),(41,47,49,43),(42,44,48,46),(51,55,53,59),(54,56,60,58),(61,67,69,63),(62,64,68,66),(71,83,73,87),(72,90),(74,84,80,86),(75,81,79,89),(76,88,78,82),(77,85),(91,103,93,107),(92,110),(94,104,100,106),(95,101,99,109),(96,108,98,102),(97,105)]])

84 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C···4L 5 6A···6F6G···6N10A10B10C12A12B12C12D12E···12X15A15B20A20B20C20D30A···30F60A···60H
order1222222233444···456···66···61010101212121212···1215152020202030···3060···60
size11115555112210···1041···15···5444222210···104444444···44···4

84 irreducible representations

dim11111111111122224444444444
type++++-+++
imageC1C2C2C3C4C4C4C6C6C12C12C12D4Q8C3×D4C3×Q8F5C2×F5C3×F5C4×F5C4⋊F5C22⋊F5C6×F5C12×F5C3×C4⋊F5C3×C22⋊F5
kernelC3×D10.3Q8D5×C2×C12C2×C6×F5D10.3Q8C6×Dic5C2×C60C6×F5C2×C4×D5C22×F5C2×Dic5C2×C20C2×F5C6×D5C6×D5D10D10C2×C12C2×C6C2×C4C6C6C6C22C2C2C2
# reps112222824441631621122222444

Matrix representation of C3×D10.3Q8 in GL6(𝔽61)

100000
010000
0013000
0001300
0000130
0000013
,
100000
010000
0001600
0001060
000100
0060100
,
6000000
0600000
0000160
0001060
0010060
0000060
,
4250000
13190000
005414047
00071447
00471470
004701454
,
100000
32600000
0010600
0000601
0001600
0000600

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,0,0,1,1,1,1,0,0,60,0,0,0,0,0,0,60,0,0],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,60,60,60,60],[42,13,0,0,0,0,5,19,0,0,0,0,0,0,54,0,47,47,0,0,14,7,14,0,0,0,0,14,7,14,0,0,47,47,0,54],[1,32,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,60,60,60,60,0,0,0,1,0,0] >;

C3×D10.3Q8 in GAP, Magma, Sage, TeX

C_3\times D_{10}._3Q_8
% in TeX

G:=Group("C3xD10.3Q8");
// GroupNames label

G:=SmallGroup(480,286);
// by ID

G=gap.SmallGroup(480,286);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,701,176,9414,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^10=c^2=d^4=1,e^2=b^4*c*d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e^-1=b^3,c*d=d*c,e*c*e^-1=b^2*c,e*d*e^-1=b^5*d^-1>;
// generators/relations

׿
×
𝔽