Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=F5

Direct product G=NxQ with N=C2xDic3 and Q=F5
dρLabelID
C2xDic3xF5120C2xDic3xF5480,998

Semidirect products G=N:Q with N=C2xDic3 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2xDic3):F5 = D10.4D12φ: F5/C5C4 ⊆ Out C2xDic31208+(C2xDic3):F5480,249
(C2xDic3):2F5 = D10.20D12φ: F5/D5C2 ⊆ Out C2xDic3120(C2xDic3):2F5480,243
(C2xDic3):3F5 = C22:F5.S3φ: F5/D5C2 ⊆ Out C2xDic31208-(C2xDic3):3F5480,999
(C2xDic3):4F5 = C2xDic3:F5φ: F5/D5C2 ⊆ Out C2xDic3120(C2xDic3):4F5480,1001

Non-split extensions G=N.Q with N=C2xDic3 and Q=F5
extensionφ:Q→Out NdρLabelID
(C2xDic3).F5 = Dic5.4D12φ: F5/C5C4 ⊆ Out C2xDic32408-(C2xDic3).F5480,251
(C2xDic3).2F5 = C30.M4(2)φ: F5/D5C2 ⊆ Out C2xDic3480(C2xDic3).2F5480,245
(C2xDic3).3F5 = D30:C8φ: F5/D5C2 ⊆ Out C2xDic3240(C2xDic3).3F5480,247
(C2xDic3).4F5 = C30.4M4(2)φ: F5/D5C2 ⊆ Out C2xDic3480(C2xDic3).4F5480,252
(C2xDic3).5F5 = Dic15:C8φ: F5/D5C2 ⊆ Out C2xDic3480(C2xDic3).5F5480,253
(C2xDic3).6F5 = D15:2M4(2)φ: F5/D5C2 ⊆ Out C2xDic31208+(C2xDic3).6F5480,1007
(C2xDic3).7F5 = C2xDic3.F5φ: F5/D5C2 ⊆ Out C2xDic3240(C2xDic3).7F5480,1009
(C2xDic3).8F5 = Dic3xC5:C8φ: trivial image480(C2xDic3).8F5480,244
(C2xDic3).9F5 = C2xD15:C8φ: trivial image240(C2xDic3).9F5480,1006

׿
x
:
Z
F
o
wr
Q
<