Extensions 1→N→G→Q→1 with N=C5xD4 and Q=C12

Direct product G=NxQ with N=C5xD4 and Q=C12
dρLabelID
D4xC60240D4xC60480,923

Semidirect products G=N:Q with N=C5xD4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C5xD4):1C12 = C3xD20:C4φ: C12/C3C4 ⊆ Out C5xD41208(C5xD4):1C12480,287
(C5xD4):2C12 = C3xD4:F5φ: C12/C3C4 ⊆ Out C5xD41208(C5xD4):2C12480,288
(C5xD4):3C12 = C3xD4xF5φ: C12/C3C4 ⊆ Out C5xD4608(C5xD4):3C12480,1054
(C5xD4):4C12 = C3xD4:Dic5φ: C12/C6C2 ⊆ Out C5xD4240(C5xD4):4C12480,110
(C5xD4):5C12 = C3xD4:2Dic5φ: C12/C6C2 ⊆ Out C5xD41204(C5xD4):5C12480,115
(C5xD4):6C12 = C3xD4xDic5φ: C12/C6C2 ⊆ Out C5xD4240(C5xD4):6C12480,727
(C5xD4):7C12 = C15xD4:C4φ: C12/C6C2 ⊆ Out C5xD4240(C5xD4):7C12480,205
(C5xD4):8C12 = C15xC4wrC2φ: C12/C6C2 ⊆ Out C5xD41202(C5xD4):8C12480,207

Non-split extensions G=N.Q with N=C5xD4 and Q=C12
extensionφ:Q→Out NdρLabelID
(C5xD4).C12 = C3xD4.F5φ: C12/C3C4 ⊆ Out C5xD42408(C5xD4).C12480,1053
(C5xD4).2C12 = C3xD4.Dic5φ: C12/C6C2 ⊆ Out C5xD42404(C5xD4).2C12480,741
(C5xD4).3C12 = C15xC8oD4φ: trivial image2402(C5xD4).3C12480,936

׿
x
:
Z
F
o
wr
Q
<