Copied to
clipboard

G = C3×D20⋊C4order 480 = 25·3·5

Direct product of C3 and D20⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D20⋊C4, D201C12, C4⋊F51C6, D5⋊C81C6, (C3×D4)⋊4F5, D41(C3×F5), C4.1(C6×F5), (D4×C15)⋊4C4, (C3×D20)⋊4C4, (C5×D4)⋊1C12, D5.2(C3×D8), (C3×D5).7D8, (D4×D5).2C6, C60.40(C2×C4), C20.1(C2×C12), (C6×D5).80D4, C12.40(C2×F5), D10.18(C3×D4), (C3×D5).9SD16, Dic5.2(C3×D4), D5.2(C3×SD16), C1510(D4⋊C4), (C3×Dic5).41D4, C6.31(C22⋊F5), C30.31(C22⋊C4), (D5×C12).82C22, C5⋊(C3×D4⋊C4), (C3×C4⋊F5)⋊5C2, (C3×D4×D5).5C2, (C3×D5⋊C8)⋊6C2, (C4×D5).7(C2×C6), C2.6(C3×C22⋊F5), C10.5(C3×C22⋊C4), SmallGroup(480,287)

Series: Derived Chief Lower central Upper central

C1C20 — C3×D20⋊C4
C1C5C10C20C4×D5D5×C12C3×C4⋊F5 — C3×D20⋊C4
C5C10C20 — C3×D20⋊C4
C1C6C12C3×D4

Generators and relations for C3×D20⋊C4
 G = < a,b,c,d | a3=b20=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b3, dcd-1=b17c >

Subgroups: 472 in 100 conjugacy classes, 36 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, D4, D4, C23, D5, D5, C10, C10, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, C2×D4, Dic5, C20, F5, D10, D10, C2×C10, C24, C2×C12, C3×D4, C3×D4, C22×C6, C3×D5, C3×D5, C30, C30, D4⋊C4, C5⋊C8, C4×D5, D20, C5⋊D4, C5×D4, C2×F5, C22×D5, C3×C4⋊C4, C2×C24, C6×D4, C3×Dic5, C60, C3×F5, C6×D5, C6×D5, C2×C30, D5⋊C8, C4⋊F5, D4×D5, C3×D4⋊C4, C3×C5⋊C8, D5×C12, C3×D20, C3×C5⋊D4, D4×C15, C6×F5, D5×C2×C6, D20⋊C4, C3×D5⋊C8, C3×C4⋊F5, C3×D4×D5, C3×D20⋊C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, D8, SD16, F5, C2×C12, C3×D4, D4⋊C4, C2×F5, C3×C22⋊C4, C3×D8, C3×SD16, C3×F5, C22⋊F5, C3×D4⋊C4, C6×F5, D20⋊C4, C3×C22⋊F5, C3×D20⋊C4

Smallest permutation representation of C3×D20⋊C4
On 120 points
Generators in S120
(1 41 36)(2 42 37)(3 43 38)(4 44 39)(5 45 40)(6 46 21)(7 47 22)(8 48 23)(9 49 24)(10 50 25)(11 51 26)(12 52 27)(13 53 28)(14 54 29)(15 55 30)(16 56 31)(17 57 32)(18 58 33)(19 59 34)(20 60 35)(61 101 86)(62 102 87)(63 103 88)(64 104 89)(65 105 90)(66 106 91)(67 107 92)(68 108 93)(69 109 94)(70 110 95)(71 111 96)(72 112 97)(73 113 98)(74 114 99)(75 115 100)(76 116 81)(77 117 82)(78 118 83)(79 119 84)(80 120 85)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 80)(2 79)(3 78)(4 77)(5 76)(6 75)(7 74)(8 73)(9 72)(10 71)(11 70)(12 69)(13 68)(14 67)(15 66)(16 65)(17 64)(18 63)(19 62)(20 61)(21 100)(22 99)(23 98)(24 97)(25 96)(26 95)(27 94)(28 93)(29 92)(30 91)(31 90)(32 89)(33 88)(34 87)(35 86)(36 85)(37 84)(38 83)(39 82)(40 81)(41 120)(42 119)(43 118)(44 117)(45 116)(46 115)(47 114)(48 113)(49 112)(50 111)(51 110)(52 109)(53 108)(54 107)(55 106)(56 105)(57 104)(58 103)(59 102)(60 101)
(2 8 10 4)(3 15 19 7)(5 9 17 13)(6 16)(12 18 20 14)(21 31)(22 38 30 34)(23 25 39 37)(24 32 28 40)(27 33 35 29)(42 48 50 44)(43 55 59 47)(45 49 57 53)(46 56)(52 58 60 54)(61 66)(62 73 70 69)(63 80 79 72)(64 67 68 75)(65 74 77 78)(71 76)(81 96)(82 83 90 99)(84 97 88 85)(86 91)(87 98 95 94)(89 92 93 100)(101 106)(102 113 110 109)(103 120 119 112)(104 107 108 115)(105 114 117 118)(111 116)

G:=sub<Sym(120)| (1,41,36)(2,42,37)(3,43,38)(4,44,39)(5,45,40)(6,46,21)(7,47,22)(8,48,23)(9,49,24)(10,50,25)(11,51,26)(12,52,27)(13,53,28)(14,54,29)(15,55,30)(16,56,31)(17,57,32)(18,58,33)(19,59,34)(20,60,35)(61,101,86)(62,102,87)(63,103,88)(64,104,89)(65,105,90)(66,106,91)(67,107,92)(68,108,93)(69,109,94)(70,110,95)(71,111,96)(72,112,97)(73,113,98)(74,114,99)(75,115,100)(76,116,81)(77,117,82)(78,118,83)(79,119,84)(80,120,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,100)(22,99)(23,98)(24,97)(25,96)(26,95)(27,94)(28,93)(29,92)(30,91)(31,90)(32,89)(33,88)(34,87)(35,86)(36,85)(37,84)(38,83)(39,82)(40,81)(41,120)(42,119)(43,118)(44,117)(45,116)(46,115)(47,114)(48,113)(49,112)(50,111)(51,110)(52,109)(53,108)(54,107)(55,106)(56,105)(57,104)(58,103)(59,102)(60,101), (2,8,10,4)(3,15,19,7)(5,9,17,13)(6,16)(12,18,20,14)(21,31)(22,38,30,34)(23,25,39,37)(24,32,28,40)(27,33,35,29)(42,48,50,44)(43,55,59,47)(45,49,57,53)(46,56)(52,58,60,54)(61,66)(62,73,70,69)(63,80,79,72)(64,67,68,75)(65,74,77,78)(71,76)(81,96)(82,83,90,99)(84,97,88,85)(86,91)(87,98,95,94)(89,92,93,100)(101,106)(102,113,110,109)(103,120,119,112)(104,107,108,115)(105,114,117,118)(111,116)>;

G:=Group( (1,41,36)(2,42,37)(3,43,38)(4,44,39)(5,45,40)(6,46,21)(7,47,22)(8,48,23)(9,49,24)(10,50,25)(11,51,26)(12,52,27)(13,53,28)(14,54,29)(15,55,30)(16,56,31)(17,57,32)(18,58,33)(19,59,34)(20,60,35)(61,101,86)(62,102,87)(63,103,88)(64,104,89)(65,105,90)(66,106,91)(67,107,92)(68,108,93)(69,109,94)(70,110,95)(71,111,96)(72,112,97)(73,113,98)(74,114,99)(75,115,100)(76,116,81)(77,117,82)(78,118,83)(79,119,84)(80,120,85), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,80)(2,79)(3,78)(4,77)(5,76)(6,75)(7,74)(8,73)(9,72)(10,71)(11,70)(12,69)(13,68)(14,67)(15,66)(16,65)(17,64)(18,63)(19,62)(20,61)(21,100)(22,99)(23,98)(24,97)(25,96)(26,95)(27,94)(28,93)(29,92)(30,91)(31,90)(32,89)(33,88)(34,87)(35,86)(36,85)(37,84)(38,83)(39,82)(40,81)(41,120)(42,119)(43,118)(44,117)(45,116)(46,115)(47,114)(48,113)(49,112)(50,111)(51,110)(52,109)(53,108)(54,107)(55,106)(56,105)(57,104)(58,103)(59,102)(60,101), (2,8,10,4)(3,15,19,7)(5,9,17,13)(6,16)(12,18,20,14)(21,31)(22,38,30,34)(23,25,39,37)(24,32,28,40)(27,33,35,29)(42,48,50,44)(43,55,59,47)(45,49,57,53)(46,56)(52,58,60,54)(61,66)(62,73,70,69)(63,80,79,72)(64,67,68,75)(65,74,77,78)(71,76)(81,96)(82,83,90,99)(84,97,88,85)(86,91)(87,98,95,94)(89,92,93,100)(101,106)(102,113,110,109)(103,120,119,112)(104,107,108,115)(105,114,117,118)(111,116) );

G=PermutationGroup([[(1,41,36),(2,42,37),(3,43,38),(4,44,39),(5,45,40),(6,46,21),(7,47,22),(8,48,23),(9,49,24),(10,50,25),(11,51,26),(12,52,27),(13,53,28),(14,54,29),(15,55,30),(16,56,31),(17,57,32),(18,58,33),(19,59,34),(20,60,35),(61,101,86),(62,102,87),(63,103,88),(64,104,89),(65,105,90),(66,106,91),(67,107,92),(68,108,93),(69,109,94),(70,110,95),(71,111,96),(72,112,97),(73,113,98),(74,114,99),(75,115,100),(76,116,81),(77,117,82),(78,118,83),(79,119,84),(80,120,85)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,80),(2,79),(3,78),(4,77),(5,76),(6,75),(7,74),(8,73),(9,72),(10,71),(11,70),(12,69),(13,68),(14,67),(15,66),(16,65),(17,64),(18,63),(19,62),(20,61),(21,100),(22,99),(23,98),(24,97),(25,96),(26,95),(27,94),(28,93),(29,92),(30,91),(31,90),(32,89),(33,88),(34,87),(35,86),(36,85),(37,84),(38,83),(39,82),(40,81),(41,120),(42,119),(43,118),(44,117),(45,116),(46,115),(47,114),(48,113),(49,112),(50,111),(51,110),(52,109),(53,108),(54,107),(55,106),(56,105),(57,104),(58,103),(59,102),(60,101)], [(2,8,10,4),(3,15,19,7),(5,9,17,13),(6,16),(12,18,20,14),(21,31),(22,38,30,34),(23,25,39,37),(24,32,28,40),(27,33,35,29),(42,48,50,44),(43,55,59,47),(45,49,57,53),(46,56),(52,58,60,54),(61,66),(62,73,70,69),(63,80,79,72),(64,67,68,75),(65,74,77,78),(71,76),(81,96),(82,83,90,99),(84,97,88,85),(86,91),(87,98,95,94),(89,92,93,100),(101,106),(102,113,110,109),(103,120,119,112),(104,107,108,115),(105,114,117,118),(111,116)]])

57 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D 5 6A6B6C6D6E6F6G6H6I6J8A8B8C8D10A10B10C12A12B12C12D12E12F12G12H15A15B 20 24A···24H30A30B30C30D30E30F60A60B
order122222334444566666666668888101010121212121212121215152024···243030303030306060
size11455201121020204114455552020101010104882210102020202044810···1044888888

57 irreducible representations

dim1111111111112222222244444488
type+++++++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D4D8SD16C3×D4C3×D4C3×D8C3×SD16F5C2×F5C3×F5C22⋊F5C6×F5C3×C22⋊F5D20⋊C4C3×D20⋊C4
kernelC3×D20⋊C4C3×D5⋊C8C3×C4⋊F5C3×D4×D5D20⋊C4C3×D20D4×C15D5⋊C8C4⋊F5D4×D5D20C5×D4C3×Dic5C6×D5C3×D5C3×D5Dic5D10D5D5C3×D4C12D4C6C4C2C3C1
# reps1111222222441122224411222412

Matrix representation of C3×D20⋊C4 in GL8(𝔽241)

150000000
015000000
00100000
00010000
00001000
00000100
00000010
00000001
,
2400000000
0240000000
00010000
0024000000
0000000240
0000100240
0000010240
0000001240
,
20231000000
64221000000
00230110000
0011110000
0000001240
0000010240
0000100240
0000000240
,
1770000000
22664000000
0017700000
000640000
00000010
00001000
00000001
00000100

G:=sub<GL(8,GF(241))| [15,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[240,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,240,240,240,240],[20,64,0,0,0,0,0,0,231,221,0,0,0,0,0,0,0,0,230,11,0,0,0,0,0,0,11,11,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,240,240,240,240],[177,226,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,177,0,0,0,0,0,0,0,0,64,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0] >;

C3×D20⋊C4 in GAP, Magma, Sage, TeX

C_3\times D_{20}\rtimes C_4
% in TeX

G:=Group("C3xD20:C4");
// GroupNames label

G:=SmallGroup(480,287);
// by ID

G=gap.SmallGroup(480,287);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,365,2524,1271,102,9414,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^20=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^3,d*c*d^-1=b^17*c>;
// generators/relations

׿
×
𝔽