Extensions 1→N→G→Q→1 with N=C3⋊D40 and Q=C2

Direct product G=N×Q with N=C3⋊D40 and Q=C2
dρLabelID
C2×C3⋊D40240C2xC3:D40480,376

Semidirect products G=N:Q with N=C3⋊D40 and Q=C2
extensionφ:Q→Out NdρLabelID
C3⋊D401C2 = D5×D4⋊S3φ: C2/C1C2 ⊆ Out C3⋊D401208+C3:D40:1C2480,553
C3⋊D402C2 = D15⋊D8φ: C2/C1C2 ⊆ Out C3⋊D401208+C3:D40:2C2480,557
C3⋊D403C2 = D20.9D6φ: C2/C1C2 ⊆ Out C3⋊D401208+C3:D40:3C2480,567
C3⋊D404C2 = Dic6⋊D10φ: C2/C1C2 ⊆ Out C3⋊D401208+C3:D40:4C2480,574
C3⋊D405C2 = D20⋊D6φ: C2/C1C2 ⊆ Out C3⋊D401208+C3:D40:5C2480,578
C3⋊D406C2 = D60⋊C22φ: C2/C1C2 ⊆ Out C3⋊D401208+C3:D40:6C2480,582
C3⋊D407C2 = D20.D6φ: C2/C1C2 ⊆ Out C3⋊D402408+C3:D40:7C2480,592
C3⋊D408C2 = D20.16D6φ: C2/C1C2 ⊆ Out C3⋊D402408+C3:D40:8C2480,597
C3⋊D409C2 = S3×D40φ: C2/C1C2 ⊆ Out C3⋊D401204+C3:D40:9C2480,328
C3⋊D4010C2 = C401D6φ: C2/C1C2 ⊆ Out C3⋊D401204+C3:D40:10C2480,329
C3⋊D4011C2 = D40⋊S3φ: C2/C1C2 ⊆ Out C3⋊D401204C3:D40:11C2480,330
C3⋊D4012C2 = D6.1D20φ: C2/C1C2 ⊆ Out C3⋊D402404C3:D40:12C2480,348
C3⋊D4013C2 = D2019D6φ: C2/C1C2 ⊆ Out C3⋊D401204+C3:D40:13C2480,377
C3⋊D4014C2 = D6030C22φ: C2/C1C2 ⊆ Out C3⋊D401204C3:D40:14C2480,388
C3⋊D4015C2 = D20.31D6φ: trivial image2404C3:D40:15C2480,387


׿
×
𝔽