metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C15⋊2D8, C3⋊2D40, D60⋊5C2, D20⋊1S3, C6.6D20, C30.2D4, C20.22D6, C12.2D10, C60.8C22, C3⋊C8⋊1D5, C5⋊1(D4⋊S3), C4.1(S3×D5), (C3×D20)⋊1C2, C10.1(C3⋊D4), C2.4(C3⋊D20), (C5×C3⋊C8)⋊1C2, SmallGroup(240,14)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊D40
G = < a,b,c | a3=b40=c2=1, bab-1=cac=a-1, cbc=b-1 >
(1 116 80)(2 41 117)(3 118 42)(4 43 119)(5 120 44)(6 45 81)(7 82 46)(8 47 83)(9 84 48)(10 49 85)(11 86 50)(12 51 87)(13 88 52)(14 53 89)(15 90 54)(16 55 91)(17 92 56)(18 57 93)(19 94 58)(20 59 95)(21 96 60)(22 61 97)(23 98 62)(24 63 99)(25 100 64)(26 65 101)(27 102 66)(28 67 103)(29 104 68)(30 69 105)(31 106 70)(32 71 107)(33 108 72)(34 73 109)(35 110 74)(36 75 111)(37 112 76)(38 77 113)(39 114 78)(40 79 115)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 40)(17 39)(18 38)(19 37)(20 36)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(41 89)(42 88)(43 87)(44 86)(45 85)(46 84)(47 83)(48 82)(49 81)(50 120)(51 119)(52 118)(53 117)(54 116)(55 115)(56 114)(57 113)(58 112)(59 111)(60 110)(61 109)(62 108)(63 107)(64 106)(65 105)(66 104)(67 103)(68 102)(69 101)(70 100)(71 99)(72 98)(73 97)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)
G:=sub<Sym(120)| (1,116,80)(2,41,117)(3,118,42)(4,43,119)(5,120,44)(6,45,81)(7,82,46)(8,47,83)(9,84,48)(10,49,85)(11,86,50)(12,51,87)(13,88,52)(14,53,89)(15,90,54)(16,55,91)(17,92,56)(18,57,93)(19,94,58)(20,59,95)(21,96,60)(22,61,97)(23,98,62)(24,63,99)(25,100,64)(26,65,101)(27,102,66)(28,67,103)(29,104,68)(30,69,105)(31,106,70)(32,71,107)(33,108,72)(34,73,109)(35,110,74)(36,75,111)(37,112,76)(38,77,113)(39,114,78)(40,79,115), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,89)(42,88)(43,87)(44,86)(45,85)(46,84)(47,83)(48,82)(49,81)(50,120)(51,119)(52,118)(53,117)(54,116)(55,115)(56,114)(57,113)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107)(64,106)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)>;
G:=Group( (1,116,80)(2,41,117)(3,118,42)(4,43,119)(5,120,44)(6,45,81)(7,82,46)(8,47,83)(9,84,48)(10,49,85)(11,86,50)(12,51,87)(13,88,52)(14,53,89)(15,90,54)(16,55,91)(17,92,56)(18,57,93)(19,94,58)(20,59,95)(21,96,60)(22,61,97)(23,98,62)(24,63,99)(25,100,64)(26,65,101)(27,102,66)(28,67,103)(29,104,68)(30,69,105)(31,106,70)(32,71,107)(33,108,72)(34,73,109)(35,110,74)(36,75,111)(37,112,76)(38,77,113)(39,114,78)(40,79,115), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,40)(17,39)(18,38)(19,37)(20,36)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(41,89)(42,88)(43,87)(44,86)(45,85)(46,84)(47,83)(48,82)(49,81)(50,120)(51,119)(52,118)(53,117)(54,116)(55,115)(56,114)(57,113)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107)(64,106)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,99)(72,98)(73,97)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90) );
G=PermutationGroup([[(1,116,80),(2,41,117),(3,118,42),(4,43,119),(5,120,44),(6,45,81),(7,82,46),(8,47,83),(9,84,48),(10,49,85),(11,86,50),(12,51,87),(13,88,52),(14,53,89),(15,90,54),(16,55,91),(17,92,56),(18,57,93),(19,94,58),(20,59,95),(21,96,60),(22,61,97),(23,98,62),(24,63,99),(25,100,64),(26,65,101),(27,102,66),(28,67,103),(29,104,68),(30,69,105),(31,106,70),(32,71,107),(33,108,72),(34,73,109),(35,110,74),(36,75,111),(37,112,76),(38,77,113),(39,114,78),(40,79,115)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,40),(17,39),(18,38),(19,37),(20,36),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(41,89),(42,88),(43,87),(44,86),(45,85),(46,84),(47,83),(48,82),(49,81),(50,120),(51,119),(52,118),(53,117),(54,116),(55,115),(56,114),(57,113),(58,112),(59,111),(60,110),(61,109),(62,108),(63,107),(64,106),(65,105),(66,104),(67,103),(68,102),(69,101),(70,100),(71,99),(72,98),(73,97),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90)]])
C3⋊D40 is a maximal subgroup of
S3×D40 C40⋊1D6 D40⋊S3 D6.1D20 D20⋊19D6 D20.31D6 D60⋊30C22 D5×D4⋊S3 D15⋊D8 D20.9D6 Dic6⋊D10 D20⋊D6 D60⋊C22 D20.D6 D20.16D6
C3⋊D40 is a maximal quotient of
C3⋊D80 D40.S3 C24.D10 C3⋊Dic40 C6.D40 D60⋊12C4 C60.5Q8
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 5A | 5B | 6A | 6B | 6C | 8A | 8B | 10A | 10B | 12 | 15A | 15B | 20A | 20B | 20C | 20D | 30A | 30B | 40A | ··· | 40H | 60A | 60B | 60C | 60D |
order | 1 | 2 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 6 | 6 | 8 | 8 | 10 | 10 | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 40 | ··· | 40 | 60 | 60 | 60 | 60 |
size | 1 | 1 | 20 | 60 | 2 | 2 | 2 | 2 | 2 | 20 | 20 | 6 | 6 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | ··· | 6 | 4 | 4 | 4 | 4 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | S3 | D4 | D5 | D6 | D8 | D10 | C3⋊D4 | D20 | D40 | D4⋊S3 | S3×D5 | C3⋊D20 | C3⋊D40 |
kernel | C3⋊D40 | C5×C3⋊C8 | C3×D20 | D60 | D20 | C30 | C3⋊C8 | C20 | C15 | C12 | C10 | C6 | C3 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 8 | 1 | 2 | 2 | 4 |
Matrix representation of C3⋊D40 ►in GL4(𝔽241) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 240 | 1 |
0 | 0 | 240 | 0 |
56 | 27 | 0 | 0 |
214 | 228 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
78 | 163 | 0 | 0 |
44 | 163 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,240,240,0,0,1,0],[56,214,0,0,27,228,0,0,0,0,0,1,0,0,1,0],[78,44,0,0,163,163,0,0,0,0,0,1,0,0,1,0] >;
C3⋊D40 in GAP, Magma, Sage, TeX
C_3\rtimes D_{40}
% in TeX
G:=Group("C3:D40");
// GroupNames label
G:=SmallGroup(240,14);
// by ID
G=gap.SmallGroup(240,14);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,73,79,218,50,490,6917]);
// Polycyclic
G:=Group<a,b,c|a^3=b^40=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export