Extensions 1→N→G→Q→1 with N=C3 and Q=D208C4

Direct product G=N×Q with N=C3 and Q=D208C4
dρLabelID
C3×D208C4240C3xD20:8C4480,686

Semidirect products G=N:Q with N=C3 and Q=D208C4
extensionφ:Q→Aut NdρLabelID
C31(D208C4) = D6017C4φ: D208C4/C4×Dic5C2 ⊆ Aut C3240C3:1(D20:8C4)480,494
C32(D208C4) = Dic1513D4φ: D208C4/D10⋊C4C2 ⊆ Aut C3240C3:2(D20:8C4)480,472
C33(D208C4) = D6011C4φ: D208C4/C5×C4⋊C4C2 ⊆ Aut C3240C3:3(D20:8C4)480,858
C34(D208C4) = C1520(C4×D4)φ: D208C4/C2×C4×D5C2 ⊆ Aut C3240C3:4(D20:8C4)480,520
C35(D208C4) = D208Dic3φ: D208C4/C2×D20C2 ⊆ Aut C3240C3:5(D20:8C4)480,510


׿
×
𝔽