metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D20⋊8C4, Dic5⋊5D4, C5⋊4(C4×D4), C4⋊C4⋊8D5, C4⋊1(C4×D5), C20⋊5(C2×C4), C2.4(D4×D5), D10⋊4(C2×C4), (C4×Dic5)⋊3C2, (C2×D20).8C2, (C2×C4).31D10, C10.24(C2×D4), D10⋊C4⋊12C2, C10.33(C4○D4), (C2×C10).34C23, (C2×C20).24C22, C10.24(C22×C4), C2.2(Q8⋊2D5), C22.18(C22×D5), (C2×Dic5).63C22, (C22×D5).23C22, (C5×C4⋊C4)⋊4C2, (C2×C4×D5)⋊12C2, C2.13(C2×C4×D5), SmallGroup(160,114)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D20⋊8C4
G = < a,b,c | a20=b2=c4=1, bab=a-1, cac-1=a11, cbc-1=a10b >
Subgroups: 312 in 94 conjugacy classes, 43 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C4×D4, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C4×Dic5, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, D20⋊8C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C4×D4, C4×D5, C22×D5, C2×C4×D5, D4×D5, Q8⋊2D5, D20⋊8C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(22 40)(23 39)(24 38)(25 37)(26 36)(27 35)(28 34)(29 33)(30 32)(41 43)(44 60)(45 59)(46 58)(47 57)(48 56)(49 55)(50 54)(51 53)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(78 80)
(1 77 55 29)(2 68 56 40)(3 79 57 31)(4 70 58 22)(5 61 59 33)(6 72 60 24)(7 63 41 35)(8 74 42 26)(9 65 43 37)(10 76 44 28)(11 67 45 39)(12 78 46 30)(13 69 47 21)(14 80 48 32)(15 71 49 23)(16 62 50 34)(17 73 51 25)(18 64 52 36)(19 75 53 27)(20 66 54 38)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,43)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)(51,53)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,80), (1,77,55,29)(2,68,56,40)(3,79,57,31)(4,70,58,22)(5,61,59,33)(6,72,60,24)(7,63,41,35)(8,74,42,26)(9,65,43,37)(10,76,44,28)(11,67,45,39)(12,78,46,30)(13,69,47,21)(14,80,48,32)(15,71,49,23)(16,62,50,34)(17,73,51,25)(18,64,52,36)(19,75,53,27)(20,66,54,38)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,43)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)(51,53)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,80), (1,77,55,29)(2,68,56,40)(3,79,57,31)(4,70,58,22)(5,61,59,33)(6,72,60,24)(7,63,41,35)(8,74,42,26)(9,65,43,37)(10,76,44,28)(11,67,45,39)(12,78,46,30)(13,69,47,21)(14,80,48,32)(15,71,49,23)(16,62,50,34)(17,73,51,25)(18,64,52,36)(19,75,53,27)(20,66,54,38) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(22,40),(23,39),(24,38),(25,37),(26,36),(27,35),(28,34),(29,33),(30,32),(41,43),(44,60),(45,59),(46,58),(47,57),(48,56),(49,55),(50,54),(51,53),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(78,80)], [(1,77,55,29),(2,68,56,40),(3,79,57,31),(4,70,58,22),(5,61,59,33),(6,72,60,24),(7,63,41,35),(8,74,42,26),(9,65,43,37),(10,76,44,28),(11,67,45,39),(12,78,46,30),(13,69,47,21),(14,80,48,32),(15,71,49,23),(16,62,50,34),(17,73,51,25),(18,64,52,36),(19,75,53,27),(20,66,54,38)]])
D20⋊8C4 is a maximal subgroup of
D20⋊C8 Dic5⋊4D8 D4⋊D5⋊6C4 D20⋊3D4 D20.D4 Dic5⋊7SD16 Q8⋊D5⋊6C4 Dic5⋊SD16 D20.12D4 Dic5⋊8SD16 D40⋊15C4 D20⋊Q8 D20.Q8 D40⋊12C4 C40⋊21(C2×C4) D20⋊2Q8 D20.2Q8 D20⋊2C8 D10⋊2M4(2) C20⋊M4(2) C10.82+ 1+4 C10.2- 1+4 C10.112+ 1+4 C42⋊7D10 C42.188D10 C42.95D10 C42.97D10 C4×D4×D5 C42⋊11D10 Dic10⋊24D4 C42.114D10 C42.122D10 C4×Q8⋊2D5 C42.126D10 C42.136D10 C20⋊(C4○D4) D20⋊19D4 D20⋊20D4 C10.472+ 1+4 C22⋊Q8⋊25D5 C4⋊C4⋊26D10 D20⋊21D4 D20⋊22D4 Dic10⋊22D4 C10.532+ 1+4 C10.202- 1+4 C10.242- 1+4 C10.1212+ 1+4 C4⋊C4⋊28D10 C10.612+ 1+4 C10.642+ 1+4 D20⋊7Q8 C42.237D10 C42.150D10 C42.151D10 C42.153D10 C42.156D10 C42⋊23D10 C42⋊24D10 C42.189D10 C42.163D10 C42.240D10 D20⋊8Q8 D20⋊9Q8 C42.178D10 Dic15⋊13D4 D60⋊17C4 D20⋊8Dic3 C15⋊20(C4×D4) D60⋊11C4
D20⋊8C4 is a maximal quotient of
C4⋊Dic5⋊15C4 (C2×C4)⋊9D20 D10⋊2C42 C10.54(C4×D4) D20⋊5C8 D10⋊5M4(2) C20⋊6M4(2) Dic5⋊8SD16 Dic20⋊15C4 D40⋊15C4 D40⋊12C4 Dic5⋊5Q16 C40⋊21(C2×C4) D40⋊16C4 D40⋊13C4 C20⋊4(C4⋊C4) C4⋊C4×Dic5 (C2×D20)⋊22C4 D10⋊5(C4⋊C4) C10.90(C4×D4) Dic15⋊13D4 D60⋊17C4 D20⋊8Dic3 C15⋊20(C4×D4) D60⋊11C4
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 10 | 10 | 2 | ··· | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D5 | C4○D4 | D10 | C4×D5 | D4×D5 | Q8⋊2D5 |
kernel | D20⋊8C4 | C4×Dic5 | D10⋊C4 | C5×C4⋊C4 | C2×C4×D5 | C2×D20 | D20 | Dic5 | C4⋊C4 | C10 | C2×C4 | C4 | C2 | C2 |
# reps | 1 | 1 | 2 | 1 | 2 | 1 | 8 | 2 | 2 | 2 | 6 | 8 | 2 | 2 |
Matrix representation of D20⋊8C4 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 6 | 40 | 0 | 0 |
0 | 36 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 21 |
0 | 0 | 0 | 37 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 40 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 37 | 1 |
32 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 9 | 16 |
0 | 0 | 0 | 0 | 32 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,6,36,0,0,0,40,1,0,0,0,0,0,40,37,0,0,0,21,1],[40,0,0,0,0,0,40,0,0,0,0,40,1,0,0,0,0,0,40,37,0,0,0,0,1],[32,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,16,32] >;
D20⋊8C4 in GAP, Magma, Sage, TeX
D_{20}\rtimes_8C_4
% in TeX
G:=Group("D20:8C4");
// GroupNames label
G:=SmallGroup(160,114);
// by ID
G=gap.SmallGroup(160,114);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,217,103,188,50,4613]);
// Polycyclic
G:=Group<a,b,c|a^20=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^10*b>;
// generators/relations