Copied to
clipboard

G = D208C4order 160 = 25·5

5th semidirect product of D20 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D208C4, Dic55D4, C54(C4×D4), C4⋊C48D5, C41(C4×D5), C205(C2×C4), C2.4(D4×D5), D104(C2×C4), (C4×Dic5)⋊3C2, (C2×D20).8C2, (C2×C4).31D10, C10.24(C2×D4), D10⋊C412C2, C10.33(C4○D4), (C2×C10).34C23, (C2×C20).24C22, C10.24(C22×C4), C2.2(Q82D5), C22.18(C22×D5), (C2×Dic5).63C22, (C22×D5).23C22, (C5×C4⋊C4)⋊4C2, (C2×C4×D5)⋊12C2, C2.13(C2×C4×D5), SmallGroup(160,114)

Series: Derived Chief Lower central Upper central

C1C10 — D208C4
C1C5C10C2×C10C22×D5C2×D20 — D208C4
C5C10 — D208C4
C1C22C4⋊C4

Generators and relations for D208C4
 G = < a,b,c | a20=b2=c4=1, bab=a-1, cac-1=a11, cbc-1=a10b >

Subgroups: 312 in 94 conjugacy classes, 43 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, C23, D5, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C4×D4, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C4×Dic5, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, D208C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, D10, C4×D4, C4×D5, C22×D5, C2×C4×D5, D4×D5, Q82D5, D208C4

Smallest permutation representation of D208C4
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(22 40)(23 39)(24 38)(25 37)(26 36)(27 35)(28 34)(29 33)(30 32)(41 43)(44 60)(45 59)(46 58)(47 57)(48 56)(49 55)(50 54)(51 53)(61 77)(62 76)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(78 80)
(1 77 55 29)(2 68 56 40)(3 79 57 31)(4 70 58 22)(5 61 59 33)(6 72 60 24)(7 63 41 35)(8 74 42 26)(9 65 43 37)(10 76 44 28)(11 67 45 39)(12 78 46 30)(13 69 47 21)(14 80 48 32)(15 71 49 23)(16 62 50 34)(17 73 51 25)(18 64 52 36)(19 75 53 27)(20 66 54 38)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,43)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)(51,53)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,80), (1,77,55,29)(2,68,56,40)(3,79,57,31)(4,70,58,22)(5,61,59,33)(6,72,60,24)(7,63,41,35)(8,74,42,26)(9,65,43,37)(10,76,44,28)(11,67,45,39)(12,78,46,30)(13,69,47,21)(14,80,48,32)(15,71,49,23)(16,62,50,34)(17,73,51,25)(18,64,52,36)(19,75,53,27)(20,66,54,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,43)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)(51,53)(61,77)(62,76)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(78,80), (1,77,55,29)(2,68,56,40)(3,79,57,31)(4,70,58,22)(5,61,59,33)(6,72,60,24)(7,63,41,35)(8,74,42,26)(9,65,43,37)(10,76,44,28)(11,67,45,39)(12,78,46,30)(13,69,47,21)(14,80,48,32)(15,71,49,23)(16,62,50,34)(17,73,51,25)(18,64,52,36)(19,75,53,27)(20,66,54,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(22,40),(23,39),(24,38),(25,37),(26,36),(27,35),(28,34),(29,33),(30,32),(41,43),(44,60),(45,59),(46,58),(47,57),(48,56),(49,55),(50,54),(51,53),(61,77),(62,76),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(78,80)], [(1,77,55,29),(2,68,56,40),(3,79,57,31),(4,70,58,22),(5,61,59,33),(6,72,60,24),(7,63,41,35),(8,74,42,26),(9,65,43,37),(10,76,44,28),(11,67,45,39),(12,78,46,30),(13,69,47,21),(14,80,48,32),(15,71,49,23),(16,62,50,34),(17,73,51,25),(18,64,52,36),(19,75,53,27),(20,66,54,38)]])

D208C4 is a maximal subgroup of
D20⋊C8  Dic54D8  D4⋊D56C4  D203D4  D20.D4  Dic57SD16  Q8⋊D56C4  Dic5⋊SD16  D20.12D4  Dic58SD16  D4015C4  D20⋊Q8  D20.Q8  D4012C4  C4021(C2×C4)  D202Q8  D20.2Q8  D202C8  D102M4(2)  C20⋊M4(2)  C10.82+ 1+4  C10.2- 1+4  C10.112+ 1+4  C427D10  C42.188D10  C42.95D10  C42.97D10  C4×D4×D5  C4211D10  Dic1024D4  C42.114D10  C42.122D10  C4×Q82D5  C42.126D10  C42.136D10  C20⋊(C4○D4)  D2019D4  D2020D4  C10.472+ 1+4  C22⋊Q825D5  C4⋊C426D10  D2021D4  D2022D4  Dic1022D4  C10.532+ 1+4  C10.202- 1+4  C10.242- 1+4  C10.1212+ 1+4  C4⋊C428D10  C10.612+ 1+4  C10.642+ 1+4  D207Q8  C42.237D10  C42.150D10  C42.151D10  C42.153D10  C42.156D10  C4223D10  C4224D10  C42.189D10  C42.163D10  C42.240D10  D208Q8  D209Q8  C42.178D10  Dic1513D4  D6017C4  D208Dic3  C1520(C4×D4)  D6011C4
D208C4 is a maximal quotient of
C4⋊Dic515C4  (C2×C4)⋊9D20  D102C42  C10.54(C4×D4)  D205C8  D105M4(2)  C206M4(2)  Dic58SD16  Dic2015C4  D4015C4  D4012C4  Dic55Q16  C4021(C2×C4)  D4016C4  D4013C4  C204(C4⋊C4)  C4⋊C4×Dic5  (C2×D20)⋊22C4  D105(C4⋊C4)  C10.90(C4×D4)  Dic1513D4  D6017C4  D208Dic3  C1520(C4×D4)  D6011C4

40 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J4K4L5A5B10A···10F20A···20L
order122222224···44444445510···1020···20
size1111101010102···255551010222···24···4

40 irreducible representations

dim11111112222244
type+++++++++++
imageC1C2C2C2C2C2C4D4D5C4○D4D10C4×D5D4×D5Q82D5
kernelD208C4C4×Dic5D10⋊C4C5×C4⋊C4C2×C4×D5C2×D20D20Dic5C4⋊C4C10C2×C4C4C2C2
# reps11212182226822

Matrix representation of D208C4 in GL5(𝔽41)

400000
064000
036100
0004021
000371
,
400000
0404000
00100
000400
000371
,
320000
01000
00100
000916
000032

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,6,36,0,0,0,40,1,0,0,0,0,0,40,37,0,0,0,21,1],[40,0,0,0,0,0,40,0,0,0,0,40,1,0,0,0,0,0,40,37,0,0,0,0,1],[32,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,16,32] >;

D208C4 in GAP, Magma, Sage, TeX

D_{20}\rtimes_8C_4
% in TeX

G:=Group("D20:8C4");
// GroupNames label

G:=SmallGroup(160,114);
// by ID

G=gap.SmallGroup(160,114);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,217,103,188,50,4613]);
// Polycyclic

G:=Group<a,b,c|a^20=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^11,c*b*c^-1=a^10*b>;
// generators/relations

׿
×
𝔽