Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=C2×C10

Direct product G=N×Q with N=C3×Q8 and Q=C2×C10
dρLabelID
Q8×C2×C30480Q8xC2xC30480,1182

Semidirect products G=N:Q with N=C3×Q8 and Q=C2×C10
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1(C2×C10) = C5×S3×SD16φ: C2×C10/C5C22 ⊆ Out C3×Q81204(C3xQ8):1(C2xC10)480,792
(C3×Q8)⋊2(C2×C10) = C5×Q83D6φ: C2×C10/C5C22 ⊆ Out C3×Q81204(C3xQ8):2(C2xC10)480,793
(C3×Q8)⋊3(C2×C10) = C10×Q82S3φ: C2×C10/C10C2 ⊆ Out C3×Q8240(C3xQ8):3(C2xC10)480,820
(C3×Q8)⋊4(C2×C10) = C5×D4⋊D6φ: C2×C10/C10C2 ⊆ Out C3×Q81204(C3xQ8):4(C2xC10)480,828
(C3×Q8)⋊5(C2×C10) = S3×Q8×C10φ: C2×C10/C10C2 ⊆ Out C3×Q8240(C3xQ8):5(C2xC10)480,1157
(C3×Q8)⋊6(C2×C10) = C10×Q83S3φ: C2×C10/C10C2 ⊆ Out C3×Q8240(C3xQ8):6(C2xC10)480,1158
(C3×Q8)⋊7(C2×C10) = C5×S3×C4○D4φ: C2×C10/C10C2 ⊆ Out C3×Q81204(C3xQ8):7(C2xC10)480,1160
(C3×Q8)⋊8(C2×C10) = C5×D4○D12φ: C2×C10/C10C2 ⊆ Out C3×Q81204(C3xQ8):8(C2xC10)480,1161
(C3×Q8)⋊9(C2×C10) = SD16×C30φ: C2×C10/C10C2 ⊆ Out C3×Q8240(C3xQ8):9(C2xC10)480,938
(C3×Q8)⋊10(C2×C10) = C15×C8⋊C22φ: C2×C10/C10C2 ⊆ Out C3×Q81204(C3xQ8):10(C2xC10)480,941
(C3×Q8)⋊11(C2×C10) = C4○D4×C30φ: trivial image240(C3xQ8):11(C2xC10)480,1183
(C3×Q8)⋊12(C2×C10) = C15×2+ 1+4φ: trivial image1204(C3xQ8):12(C2xC10)480,1184

Non-split extensions G=N.Q with N=C3×Q8 and Q=C2×C10
extensionφ:Q→Out NdρLabelID
(C3×Q8).1(C2×C10) = C5×D4.D6φ: C2×C10/C5C22 ⊆ Out C3×Q82404(C3xQ8).1(C2xC10)480,794
(C3×Q8).2(C2×C10) = C5×Q8.7D6φ: C2×C10/C5C22 ⊆ Out C3×Q82404(C3xQ8).2(C2xC10)480,795
(C3×Q8).3(C2×C10) = C5×S3×Q16φ: C2×C10/C5C22 ⊆ Out C3×Q82404(C3xQ8).3(C2xC10)480,796
(C3×Q8).4(C2×C10) = C5×Q16⋊S3φ: C2×C10/C5C22 ⊆ Out C3×Q82404(C3xQ8).4(C2xC10)480,797
(C3×Q8).5(C2×C10) = C5×D24⋊C2φ: C2×C10/C5C22 ⊆ Out C3×Q82404(C3xQ8).5(C2xC10)480,798
(C3×Q8).6(C2×C10) = C5×Q8.11D6φ: C2×C10/C10C2 ⊆ Out C3×Q82404(C3xQ8).6(C2xC10)480,821
(C3×Q8).7(C2×C10) = C10×C3⋊Q16φ: C2×C10/C10C2 ⊆ Out C3×Q8480(C3xQ8).7(C2xC10)480,822
(C3×Q8).8(C2×C10) = C5×Q8.13D6φ: C2×C10/C10C2 ⊆ Out C3×Q82404(C3xQ8).8(C2xC10)480,829
(C3×Q8).9(C2×C10) = C5×Q8.14D6φ: C2×C10/C10C2 ⊆ Out C3×Q82404(C3xQ8).9(C2xC10)480,830
(C3×Q8).10(C2×C10) = C5×Q8.15D6φ: C2×C10/C10C2 ⊆ Out C3×Q82404(C3xQ8).10(C2xC10)480,1159
(C3×Q8).11(C2×C10) = C5×Q8○D12φ: C2×C10/C10C2 ⊆ Out C3×Q82404(C3xQ8).11(C2xC10)480,1162
(C3×Q8).12(C2×C10) = Q16×C30φ: C2×C10/C10C2 ⊆ Out C3×Q8480(C3xQ8).12(C2xC10)480,939
(C3×Q8).13(C2×C10) = C15×C4○D8φ: C2×C10/C10C2 ⊆ Out C3×Q82402(C3xQ8).13(C2xC10)480,940
(C3×Q8).14(C2×C10) = C15×C8.C22φ: C2×C10/C10C2 ⊆ Out C3×Q82404(C3xQ8).14(C2xC10)480,942
(C3×Q8).15(C2×C10) = C15×2- 1+4φ: trivial image2404(C3xQ8).15(C2xC10)480,1185

׿
×
𝔽