Copied to
clipboard

G = C5×Q83D6order 480 = 25·3·5

Direct product of C5 and Q83D6

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×Q83D6, C4021D6, D246C10, C12028C22, C60.221C23, C83(S3×C10), C243(C2×C10), D4⋊S33C10, (S3×D4)⋊3C10, (C5×Q8)⋊18D6, Q83(S3×C10), D6.7(C5×D4), C8⋊S31C10, (C5×D24)⋊14C2, D122(C2×C10), (C5×SD16)⋊5S3, SD161(C5×S3), (C5×D4).27D6, D4.3(S3×C10), C6.31(D4×C10), C1533(C8⋊C22), Q82S32C10, Q83S31C10, (C15×SD16)⋊7C2, (C3×SD16)⋊1C10, (S3×C10).43D4, C10.185(S3×D4), C30.367(C2×D4), Dic3.9(C5×D4), (C5×D12)⋊19C22, C12.5(C22×C10), (C5×Dic3).46D4, (Q8×C15)⋊17C22, (S3×C20).37C22, C20.194(C22×S3), (D4×C15).32C22, C3⋊C82(C2×C10), (C5×S3×D4)⋊10C2, C33(C5×C8⋊C22), C4.5(S3×C2×C10), C2.19(C5×S3×D4), (C5×C8⋊S3)⋊9C2, (C5×D4⋊S3)⋊11C2, (C5×C3⋊C8)⋊24C22, (C3×Q8)⋊2(C2×C10), (C4×S3).2(C2×C10), (C5×Q83S3)⋊8C2, (C3×D4).3(C2×C10), (C5×Q82S3)⋊10C2, SmallGroup(480,793)

Series: Derived Chief Lower central Upper central

C1C12 — C5×Q83D6
C1C3C6C12C60S3×C20C5×S3×D4 — C5×Q83D6
C3C6C12 — C5×Q83D6
C1C10C20C5×SD16

Generators and relations for C5×Q83D6
 G = < a,b,c,d,e | a5=b4=d6=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=ebe=b-1, dcd-1=b-1c, ece=bc, ede=d-1 >

Subgroups: 404 in 136 conjugacy classes, 54 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, D4, Q8, C23, C10, C10, Dic3, C12, C12, D6, D6, C2×C6, C15, M4(2), D8, SD16, SD16, C2×D4, C4○D4, C20, C20, C2×C10, C3⋊C8, C24, C4×S3, C4×S3, D12, D12, C3⋊D4, C3×D4, C3×Q8, C22×S3, C5×S3, C30, C30, C8⋊C22, C40, C40, C2×C20, C5×D4, C5×D4, C5×Q8, C22×C10, C8⋊S3, D24, D4⋊S3, Q82S3, C3×SD16, S3×D4, Q83S3, C5×Dic3, C60, C60, S3×C10, S3×C10, C2×C30, C5×M4(2), C5×D8, C5×SD16, C5×SD16, D4×C10, C5×C4○D4, Q83D6, C5×C3⋊C8, C120, S3×C20, S3×C20, C5×D12, C5×D12, C5×C3⋊D4, D4×C15, Q8×C15, S3×C2×C10, C5×C8⋊C22, C5×C8⋊S3, C5×D24, C5×D4⋊S3, C5×Q82S3, C15×SD16, C5×S3×D4, C5×Q83S3, C5×Q83D6
Quotients: C1, C2, C22, C5, S3, D4, C23, C10, D6, C2×D4, C2×C10, C22×S3, C5×S3, C8⋊C22, C5×D4, C22×C10, S3×D4, S3×C10, D4×C10, Q83D6, S3×C2×C10, C5×C8⋊C22, C5×S3×D4, C5×Q83D6

Smallest permutation representation of C5×Q83D6
On 120 points
Generators in S120
(1 30 6 21 15)(2 28 4 19 13)(3 29 5 20 14)(7 11 18 23 25)(8 12 16 24 26)(9 10 17 22 27)(31 74 103 79 112)(32 75 104 80 113)(33 76 105 81 114)(34 77 106 82 109)(35 78 107 83 110)(36 73 108 84 111)(37 43 116 91 53)(38 44 117 92 54)(39 45 118 93 49)(40 46 119 94 50)(41 47 120 95 51)(42 48 115 96 52)(55 62 71 97 85)(56 63 72 98 86)(57 64 67 99 87)(58 65 68 100 88)(59 66 69 101 89)(60 61 70 102 90)
(1 89 9 86)(2 87 7 90)(3 85 8 88)(4 64 18 61)(5 62 16 65)(6 66 17 63)(10 56 30 59)(11 60 28 57)(12 58 29 55)(13 99 25 102)(14 97 26 100)(15 101 27 98)(19 67 23 70)(20 71 24 68)(21 69 22 72)(31 34 40 37)(32 38 41 35)(33 36 42 39)(43 74 77 46)(44 47 78 75)(45 76 73 48)(49 114 111 52)(50 53 112 109)(51 110 113 54)(79 82 94 91)(80 92 95 83)(81 84 96 93)(103 106 119 116)(104 117 120 107)(105 108 115 118)
(1 96 9 81)(2 94 7 79)(3 92 8 83)(4 40 18 31)(5 38 16 35)(6 42 17 33)(10 114 30 52)(11 112 28 50)(12 110 29 54)(13 119 25 103)(14 117 26 107)(15 115 27 105)(19 46 23 74)(20 44 24 78)(21 48 22 76)(32 65 41 62)(34 61 37 64)(36 63 39 66)(43 67 77 70)(45 69 73 72)(47 71 75 68)(49 59 111 56)(51 55 113 58)(53 57 109 60)(80 88 95 85)(82 90 91 87)(84 86 93 89)(97 104 100 120)(98 118 101 108)(99 106 102 116)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 8)(2 7)(3 9)(4 18)(5 17)(6 16)(10 29)(11 28)(12 30)(13 25)(14 27)(15 26)(19 23)(20 22)(21 24)(31 34)(32 33)(35 36)(37 40)(38 39)(41 42)(43 46)(44 45)(47 48)(49 54)(50 53)(51 52)(55 59)(56 58)(62 66)(63 65)(68 72)(69 71)(73 78)(74 77)(75 76)(79 82)(80 81)(83 84)(85 89)(86 88)(91 94)(92 93)(95 96)(97 101)(98 100)(103 106)(104 105)(107 108)(109 112)(110 111)(113 114)(115 120)(116 119)(117 118)

G:=sub<Sym(120)| (1,30,6,21,15)(2,28,4,19,13)(3,29,5,20,14)(7,11,18,23,25)(8,12,16,24,26)(9,10,17,22,27)(31,74,103,79,112)(32,75,104,80,113)(33,76,105,81,114)(34,77,106,82,109)(35,78,107,83,110)(36,73,108,84,111)(37,43,116,91,53)(38,44,117,92,54)(39,45,118,93,49)(40,46,119,94,50)(41,47,120,95,51)(42,48,115,96,52)(55,62,71,97,85)(56,63,72,98,86)(57,64,67,99,87)(58,65,68,100,88)(59,66,69,101,89)(60,61,70,102,90), (1,89,9,86)(2,87,7,90)(3,85,8,88)(4,64,18,61)(5,62,16,65)(6,66,17,63)(10,56,30,59)(11,60,28,57)(12,58,29,55)(13,99,25,102)(14,97,26,100)(15,101,27,98)(19,67,23,70)(20,71,24,68)(21,69,22,72)(31,34,40,37)(32,38,41,35)(33,36,42,39)(43,74,77,46)(44,47,78,75)(45,76,73,48)(49,114,111,52)(50,53,112,109)(51,110,113,54)(79,82,94,91)(80,92,95,83)(81,84,96,93)(103,106,119,116)(104,117,120,107)(105,108,115,118), (1,96,9,81)(2,94,7,79)(3,92,8,83)(4,40,18,31)(5,38,16,35)(6,42,17,33)(10,114,30,52)(11,112,28,50)(12,110,29,54)(13,119,25,103)(14,117,26,107)(15,115,27,105)(19,46,23,74)(20,44,24,78)(21,48,22,76)(32,65,41,62)(34,61,37,64)(36,63,39,66)(43,67,77,70)(45,69,73,72)(47,71,75,68)(49,59,111,56)(51,55,113,58)(53,57,109,60)(80,88,95,85)(82,90,91,87)(84,86,93,89)(97,104,100,120)(98,118,101,108)(99,106,102,116), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,8)(2,7)(3,9)(4,18)(5,17)(6,16)(10,29)(11,28)(12,30)(13,25)(14,27)(15,26)(19,23)(20,22)(21,24)(31,34)(32,33)(35,36)(37,40)(38,39)(41,42)(43,46)(44,45)(47,48)(49,54)(50,53)(51,52)(55,59)(56,58)(62,66)(63,65)(68,72)(69,71)(73,78)(74,77)(75,76)(79,82)(80,81)(83,84)(85,89)(86,88)(91,94)(92,93)(95,96)(97,101)(98,100)(103,106)(104,105)(107,108)(109,112)(110,111)(113,114)(115,120)(116,119)(117,118)>;

G:=Group( (1,30,6,21,15)(2,28,4,19,13)(3,29,5,20,14)(7,11,18,23,25)(8,12,16,24,26)(9,10,17,22,27)(31,74,103,79,112)(32,75,104,80,113)(33,76,105,81,114)(34,77,106,82,109)(35,78,107,83,110)(36,73,108,84,111)(37,43,116,91,53)(38,44,117,92,54)(39,45,118,93,49)(40,46,119,94,50)(41,47,120,95,51)(42,48,115,96,52)(55,62,71,97,85)(56,63,72,98,86)(57,64,67,99,87)(58,65,68,100,88)(59,66,69,101,89)(60,61,70,102,90), (1,89,9,86)(2,87,7,90)(3,85,8,88)(4,64,18,61)(5,62,16,65)(6,66,17,63)(10,56,30,59)(11,60,28,57)(12,58,29,55)(13,99,25,102)(14,97,26,100)(15,101,27,98)(19,67,23,70)(20,71,24,68)(21,69,22,72)(31,34,40,37)(32,38,41,35)(33,36,42,39)(43,74,77,46)(44,47,78,75)(45,76,73,48)(49,114,111,52)(50,53,112,109)(51,110,113,54)(79,82,94,91)(80,92,95,83)(81,84,96,93)(103,106,119,116)(104,117,120,107)(105,108,115,118), (1,96,9,81)(2,94,7,79)(3,92,8,83)(4,40,18,31)(5,38,16,35)(6,42,17,33)(10,114,30,52)(11,112,28,50)(12,110,29,54)(13,119,25,103)(14,117,26,107)(15,115,27,105)(19,46,23,74)(20,44,24,78)(21,48,22,76)(32,65,41,62)(34,61,37,64)(36,63,39,66)(43,67,77,70)(45,69,73,72)(47,71,75,68)(49,59,111,56)(51,55,113,58)(53,57,109,60)(80,88,95,85)(82,90,91,87)(84,86,93,89)(97,104,100,120)(98,118,101,108)(99,106,102,116), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,8)(2,7)(3,9)(4,18)(5,17)(6,16)(10,29)(11,28)(12,30)(13,25)(14,27)(15,26)(19,23)(20,22)(21,24)(31,34)(32,33)(35,36)(37,40)(38,39)(41,42)(43,46)(44,45)(47,48)(49,54)(50,53)(51,52)(55,59)(56,58)(62,66)(63,65)(68,72)(69,71)(73,78)(74,77)(75,76)(79,82)(80,81)(83,84)(85,89)(86,88)(91,94)(92,93)(95,96)(97,101)(98,100)(103,106)(104,105)(107,108)(109,112)(110,111)(113,114)(115,120)(116,119)(117,118) );

G=PermutationGroup([[(1,30,6,21,15),(2,28,4,19,13),(3,29,5,20,14),(7,11,18,23,25),(8,12,16,24,26),(9,10,17,22,27),(31,74,103,79,112),(32,75,104,80,113),(33,76,105,81,114),(34,77,106,82,109),(35,78,107,83,110),(36,73,108,84,111),(37,43,116,91,53),(38,44,117,92,54),(39,45,118,93,49),(40,46,119,94,50),(41,47,120,95,51),(42,48,115,96,52),(55,62,71,97,85),(56,63,72,98,86),(57,64,67,99,87),(58,65,68,100,88),(59,66,69,101,89),(60,61,70,102,90)], [(1,89,9,86),(2,87,7,90),(3,85,8,88),(4,64,18,61),(5,62,16,65),(6,66,17,63),(10,56,30,59),(11,60,28,57),(12,58,29,55),(13,99,25,102),(14,97,26,100),(15,101,27,98),(19,67,23,70),(20,71,24,68),(21,69,22,72),(31,34,40,37),(32,38,41,35),(33,36,42,39),(43,74,77,46),(44,47,78,75),(45,76,73,48),(49,114,111,52),(50,53,112,109),(51,110,113,54),(79,82,94,91),(80,92,95,83),(81,84,96,93),(103,106,119,116),(104,117,120,107),(105,108,115,118)], [(1,96,9,81),(2,94,7,79),(3,92,8,83),(4,40,18,31),(5,38,16,35),(6,42,17,33),(10,114,30,52),(11,112,28,50),(12,110,29,54),(13,119,25,103),(14,117,26,107),(15,115,27,105),(19,46,23,74),(20,44,24,78),(21,48,22,76),(32,65,41,62),(34,61,37,64),(36,63,39,66),(43,67,77,70),(45,69,73,72),(47,71,75,68),(49,59,111,56),(51,55,113,58),(53,57,109,60),(80,88,95,85),(82,90,91,87),(84,86,93,89),(97,104,100,120),(98,118,101,108),(99,106,102,116)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,8),(2,7),(3,9),(4,18),(5,17),(6,16),(10,29),(11,28),(12,30),(13,25),(14,27),(15,26),(19,23),(20,22),(21,24),(31,34),(32,33),(35,36),(37,40),(38,39),(41,42),(43,46),(44,45),(47,48),(49,54),(50,53),(51,52),(55,59),(56,58),(62,66),(63,65),(68,72),(69,71),(73,78),(74,77),(75,76),(79,82),(80,81),(83,84),(85,89),(86,88),(91,94),(92,93),(95,96),(97,101),(98,100),(103,106),(104,105),(107,108),(109,112),(110,111),(113,114),(115,120),(116,119),(117,118)]])

90 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B5C5D6A6B8A8B10A10B10C10D10E10F10G10H10I10J10K10L10M···10T12A12B15A15B15C15D20A20B20C20D20E20F20G20H20I20J20K20L24A24B30A30B30C30D30E30F30G30H40A40B40C40D40E40F40G40H60A60B60C60D60E60F60G60H120A···120H
order12222234445555668810101010101010101010101010···101212151515152020202020202020202020202424303030303030303040404040404040406060606060606060120···120
size11461212224611112841211114444666612···124822222222444466664422228888444412121212444488884···4

90 irreducible representations

dim1111111111111111222222222222444444
type+++++++++++++++++
imageC1C2C2C2C2C2C2C2C5C10C10C10C10C10C10C10S3D4D4D6D6D6C5×S3C5×D4C5×D4S3×C10S3×C10S3×C10C8⋊C22S3×D4Q83D6C5×C8⋊C22C5×S3×D4C5×Q83D6
kernelC5×Q83D6C5×C8⋊S3C5×D24C5×D4⋊S3C5×Q82S3C15×SD16C5×S3×D4C5×Q83S3Q83D6C8⋊S3D24D4⋊S3Q82S3C3×SD16S3×D4Q83S3C5×SD16C5×Dic3S3×C10C40C5×D4C5×Q8SD16Dic3D6C8D4Q8C15C10C5C3C2C1
# reps1111111144444444111111444444112448

Matrix representation of C5×Q83D6 in GL4(𝔽241) generated by

205000
020500
002050
000205
,
24002400
02400240
2010
0201
,
001169
00232125
2321800
223900
,
240100
240000
22391240
2010
,
0100
1000
02390240
23902400
G:=sub<GL(4,GF(241))| [205,0,0,0,0,205,0,0,0,0,205,0,0,0,0,205],[240,0,2,0,0,240,0,2,240,0,1,0,0,240,0,1],[0,0,232,223,0,0,18,9,116,232,0,0,9,125,0,0],[240,240,2,2,1,0,239,0,0,0,1,1,0,0,240,0],[0,1,0,239,1,0,239,0,0,0,0,240,0,0,240,0] >;

C5×Q83D6 in GAP, Magma, Sage, TeX

C_5\times Q_8\rtimes_3D_6
% in TeX

G:=Group("C5xQ8:3D6");
// GroupNames label

G:=SmallGroup(480,793);
// by ID

G=gap.SmallGroup(480,793);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-3,1766,471,436,2111,1068,102,15686]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=d^6=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=e*b*e=b^-1,d*c*d^-1=b^-1*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽