Extensions 1→N→G→Q→1 with N=C2×C10 and Q=C3×Q8

Direct product G=N×Q with N=C2×C10 and Q=C3×Q8
dρLabelID
Q8×C2×C30480Q8xC2xC30480,1182

Semidirect products G=N:Q with N=C2×C10 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
(C2×C10)⋊(C3×Q8) = A4×Dic10φ: C3×Q8/C4C6 ⊆ Aut C2×C101206-(C2xC10):(C3xQ8)480,1035
(C2×C10)⋊2(C3×Q8) = C3×Dic5.14D4φ: C3×Q8/C6C22 ⊆ Aut C2×C10240(C2xC10):2(C3xQ8)480,671
(C2×C10)⋊3(C3×Q8) = C5×Q8×A4φ: C3×Q8/Q8C3 ⊆ Aut C2×C101206(C2xC10):3(C3xQ8)480,1129
(C2×C10)⋊4(C3×Q8) = C15×C22⋊Q8φ: C3×Q8/C12C2 ⊆ Aut C2×C10240(C2xC10):4(C3xQ8)480,927
(C2×C10)⋊5(C3×Q8) = C3×C20.48D4φ: C3×Q8/C12C2 ⊆ Aut C2×C10240(C2xC10):5(C3xQ8)480,717
(C2×C10)⋊6(C3×Q8) = C2×C6×Dic10φ: C3×Q8/C12C2 ⊆ Aut C2×C10480(C2xC10):6(C3xQ8)480,1135

Non-split extensions G=N.Q with N=C2×C10 and Q=C3×Q8
extensionφ:Q→Aut NdρLabelID
(C2×C10).(C3×Q8) = C3×C20.53D4φ: C3×Q8/C6C22 ⊆ Aut C2×C102404(C2xC10).(C3xQ8)480,100
(C2×C10).2(C3×Q8) = C15×C8.C4φ: C3×Q8/C12C2 ⊆ Aut C2×C102402(C2xC10).2(C3xQ8)480,211
(C2×C10).3(C3×Q8) = C3×C40.6C4φ: C3×Q8/C12C2 ⊆ Aut C2×C102402(C2xC10).3(C3xQ8)480,97
(C2×C10).4(C3×Q8) = C3×C10.10C42φ: C3×Q8/C12C2 ⊆ Aut C2×C10480(C2xC10).4(C3xQ8)480,109
(C2×C10).5(C3×Q8) = C6×C10.D4φ: C3×Q8/C12C2 ⊆ Aut C2×C10480(C2xC10).5(C3xQ8)480,716
(C2×C10).6(C3×Q8) = C6×C4⋊Dic5φ: C3×Q8/C12C2 ⊆ Aut C2×C10480(C2xC10).6(C3xQ8)480,718
(C2×C10).7(C3×Q8) = C15×C2.C42central extension (φ=1)480(C2xC10).7(C3xQ8)480,198
(C2×C10).8(C3×Q8) = C4⋊C4×C30central extension (φ=1)480(C2xC10).8(C3xQ8)480,921

׿
×
𝔽