Copied to
clipboard

G = A4×Dic10order 480 = 25·3·5

Direct product of A4 and Dic10

direct product, metabelian, soluble, monomial

Aliases: A4×Dic10, C5⋊(Q8×A4), (C5×A4)⋊3Q8, C4.1(D5×A4), C20.1(C2×A4), (C4×A4).3D5, (A4×C20).3C2, (C22×Dic10)⋊C3, C22⋊(C3×Dic10), (C2×A4).13D10, C10.1(C22×A4), (C22×C20).1C6, Dic5.1(C2×A4), (A4×Dic5).2C2, C23.10(C6×D5), (C10×A4).13C22, (C22×Dic5).1C6, (C2×C10)⋊(C3×Q8), C2.3(C2×D5×A4), (C22×C4).(C3×D5), (C22×C10).1(C2×C6), SmallGroup(480,1035)

Series: Derived Chief Lower central Upper central

C1C22×C10 — A4×Dic10
C1C5C2×C10C22×C10C10×A4A4×Dic5 — A4×Dic10
C2×C10C22×C10 — A4×Dic10
C1C2C4

Generators and relations for A4×Dic10
 G = < a,b,c,d,e | a2=b2=c3=d20=1, e2=d10, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 480 in 92 conjugacy classes, 27 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C2×C4, Q8, C23, C10, C10, C12, A4, C15, C22×C4, C22×C4, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, C2×C10, C3×Q8, C2×A4, C30, C22×Q8, Dic10, Dic10, C2×Dic5, C2×C20, C22×C10, C4×A4, C4×A4, C3×Dic5, C60, C5×A4, C2×Dic10, C22×Dic5, C22×C20, Q8×A4, C3×Dic10, C10×A4, C22×Dic10, A4×Dic5, A4×C20, A4×Dic10
Quotients: C1, C2, C3, C22, C6, Q8, D5, A4, C2×C6, D10, C3×Q8, C2×A4, C3×D5, Dic10, C22×A4, C6×D5, Q8×A4, C3×Dic10, D5×A4, C2×D5×A4, A4×Dic10

Smallest permutation representation of A4×Dic10
On 120 points
Generators in S120
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)
(1 34 64)(2 35 65)(3 36 66)(4 37 67)(5 38 68)(6 39 69)(7 40 70)(8 21 71)(9 22 72)(10 23 73)(11 24 74)(12 25 75)(13 26 76)(14 27 77)(15 28 78)(16 29 79)(17 30 80)(18 31 61)(19 32 62)(20 33 63)(41 115 97)(42 116 98)(43 117 99)(44 118 100)(45 119 81)(46 120 82)(47 101 83)(48 102 84)(49 103 85)(50 104 86)(51 105 87)(52 106 88)(53 107 89)(54 108 90)(55 109 91)(56 110 92)(57 111 93)(58 112 94)(59 113 95)(60 114 96)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 43 11 53)(2 42 12 52)(3 41 13 51)(4 60 14 50)(5 59 15 49)(6 58 16 48)(7 57 17 47)(8 56 18 46)(9 55 19 45)(10 54 20 44)(21 110 31 120)(22 109 32 119)(23 108 33 118)(24 107 34 117)(25 106 35 116)(26 105 36 115)(27 104 37 114)(28 103 38 113)(29 102 39 112)(30 101 40 111)(61 82 71 92)(62 81 72 91)(63 100 73 90)(64 99 74 89)(65 98 75 88)(66 97 76 87)(67 96 77 86)(68 95 78 85)(69 94 79 84)(70 93 80 83)

G:=sub<Sym(120)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,34,64)(2,35,65)(3,36,66)(4,37,67)(5,38,68)(6,39,69)(7,40,70)(8,21,71)(9,22,72)(10,23,73)(11,24,74)(12,25,75)(13,26,76)(14,27,77)(15,28,78)(16,29,79)(17,30,80)(18,31,61)(19,32,62)(20,33,63)(41,115,97)(42,116,98)(43,117,99)(44,118,100)(45,119,81)(46,120,82)(47,101,83)(48,102,84)(49,103,85)(50,104,86)(51,105,87)(52,106,88)(53,107,89)(54,108,90)(55,109,91)(56,110,92)(57,111,93)(58,112,94)(59,113,95)(60,114,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,43,11,53)(2,42,12,52)(3,41,13,51)(4,60,14,50)(5,59,15,49)(6,58,16,48)(7,57,17,47)(8,56,18,46)(9,55,19,45)(10,54,20,44)(21,110,31,120)(22,109,32,119)(23,108,33,118)(24,107,34,117)(25,106,35,116)(26,105,36,115)(27,104,37,114)(28,103,38,113)(29,102,39,112)(30,101,40,111)(61,82,71,92)(62,81,72,91)(63,100,73,90)(64,99,74,89)(65,98,75,88)(66,97,76,87)(67,96,77,86)(68,95,78,85)(69,94,79,84)(70,93,80,83)>;

G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120), (1,34,64)(2,35,65)(3,36,66)(4,37,67)(5,38,68)(6,39,69)(7,40,70)(8,21,71)(9,22,72)(10,23,73)(11,24,74)(12,25,75)(13,26,76)(14,27,77)(15,28,78)(16,29,79)(17,30,80)(18,31,61)(19,32,62)(20,33,63)(41,115,97)(42,116,98)(43,117,99)(44,118,100)(45,119,81)(46,120,82)(47,101,83)(48,102,84)(49,103,85)(50,104,86)(51,105,87)(52,106,88)(53,107,89)(54,108,90)(55,109,91)(56,110,92)(57,111,93)(58,112,94)(59,113,95)(60,114,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,43,11,53)(2,42,12,52)(3,41,13,51)(4,60,14,50)(5,59,15,49)(6,58,16,48)(7,57,17,47)(8,56,18,46)(9,55,19,45)(10,54,20,44)(21,110,31,120)(22,109,32,119)(23,108,33,118)(24,107,34,117)(25,106,35,116)(26,105,36,115)(27,104,37,114)(28,103,38,113)(29,102,39,112)(30,101,40,111)(61,82,71,92)(62,81,72,91)(63,100,73,90)(64,99,74,89)(65,98,75,88)(66,97,76,87)(67,96,77,86)(68,95,78,85)(69,94,79,84)(70,93,80,83) );

G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120)], [(1,34,64),(2,35,65),(3,36,66),(4,37,67),(5,38,68),(6,39,69),(7,40,70),(8,21,71),(9,22,72),(10,23,73),(11,24,74),(12,25,75),(13,26,76),(14,27,77),(15,28,78),(16,29,79),(17,30,80),(18,31,61),(19,32,62),(20,33,63),(41,115,97),(42,116,98),(43,117,99),(44,118,100),(45,119,81),(46,120,82),(47,101,83),(48,102,84),(49,103,85),(50,104,86),(51,105,87),(52,106,88),(53,107,89),(54,108,90),(55,109,91),(56,110,92),(57,111,93),(58,112,94),(59,113,95),(60,114,96)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,43,11,53),(2,42,12,52),(3,41,13,51),(4,60,14,50),(5,59,15,49),(6,58,16,48),(7,57,17,47),(8,56,18,46),(9,55,19,45),(10,54,20,44),(21,110,31,120),(22,109,32,119),(23,108,33,118),(24,107,34,117),(25,106,35,116),(26,105,36,115),(27,104,37,114),(28,103,38,113),(29,102,39,112),(30,101,40,111),(61,82,71,92),(62,81,72,91),(63,100,73,90),(64,99,74,89),(65,98,75,88),(66,97,76,87),(67,96,77,86),(68,95,78,85),(69,94,79,84),(70,93,80,83)]])

52 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E4F5A5B6A6B10A10B10C10D10E10F12A12B12C12D12E12F15A15B15C15D20A20B20C20D20E20F20G20H30A30B30C30D60A···60H
order12223344444455661010101010101212121212121515151520202020202020203030303060···60
size11334426101030302244226666884040404088882222666688888···8

52 irreducible representations

dim111111222222223336666
type+++-++-+++-++-
imageC1C2C2C3C6C6Q8D5D10C3×Q8C3×D5Dic10C6×D5C3×Dic10A4C2×A4C2×A4Q8×A4D5×A4C2×D5×A4A4×Dic10
kernelA4×Dic10A4×Dic5A4×C20C22×Dic10C22×Dic5C22×C20C5×A4C4×A4C2×A4C2×C10C22×C4A4C23C22Dic10Dic5C20C5C4C2C1
# reps121242122244481211224

Matrix representation of A4×Dic10 in GL5(𝔽61)

10000
01000
00001
00606060
00100
,
10000
01000
00010
00100
00606060
,
10000
01000
004700
000047
00141414
,
2731000
314000
006000
000600
000060
,
5614000
335000
00100
00010
00001

G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0,0,60,0,0,0,1,60,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,60,0,0,1,0,60,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,47,0,14,0,0,0,0,14,0,0,0,47,14],[27,31,0,0,0,31,4,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[56,33,0,0,0,14,5,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;

A4×Dic10 in GAP, Magma, Sage, TeX

A_4\times {\rm Dic}_{10}
% in TeX

G:=Group("A4xDic10");
// GroupNames label

G:=SmallGroup(480,1035);
// by ID

G=gap.SmallGroup(480,1035);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-5,84,197,92,648,271,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^20=1,e^2=d^10,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽