# Extensions 1→N→G→Q→1 with N=C22×D5 and Q=C2×C6

Direct product G=N×Q with N=C22×D5 and Q=C2×C6
dρLabelID
D5×C23×C6240D5xC2^3xC6480,1210

Semidirect products G=N:Q with N=C22×D5 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C22×D5)⋊1(C2×C6) = C3×C22⋊D20φ: C2×C6/C3C22 ⊆ Out C22×D5120(C2^2xD5):1(C2xC6)480,675
(C22×D5)⋊2(C2×C6) = C3×C242D5φ: C2×C6/C3C22 ⊆ Out C22×D5120(C2^2xD5):2(C2xC6)480,746
(C22×D5)⋊3(C2×C6) = C3×D46D10φ: C2×C6/C3C22 ⊆ Out C22×D51204(C2^2xD5):3(C2xC6)480,1141
(C22×D5)⋊4(C2×C6) = C3×D48D10φ: C2×C6/C3C22 ⊆ Out C22×D51204(C2^2xD5):4(C2xC6)480,1146
(C22×D5)⋊5(C2×C6) = C22×D5×A4φ: C2×C6/C22C3 ⊆ Out C22×D560(C2^2xD5):5(C2xC6)480,1202
(C22×D5)⋊6(C2×C6) = C2×C6×D20φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5):6(C2xC6)480,1137
(C22×D5)⋊7(C2×C6) = C6×D4×D5φ: C2×C6/C6C2 ⊆ Out C22×D5120(C2^2xD5):7(C2xC6)480,1139
(C22×D5)⋊8(C2×C6) = C2×C6×C5⋊D4φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5):8(C2xC6)480,1149

Non-split extensions G=N.Q with N=C22×D5 and Q=C2×C6
extensionφ:Q→Out NdρLabelID
(C22×D5).(C2×C6) = C2×A4×F5φ: C2×C6/C2C6 ⊆ Out C22×D53012+(C2^2xD5).(C2xC6)480,1192
(C22×D5).2(C2×C6) = C3×C204D4φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).2(C2xC6)480,667
(C22×D5).3(C2×C6) = C3×C4.D20φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).3(C2xC6)480,668
(C22×D5).4(C2×C6) = C3×C422D5φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).4(C2xC6)480,669
(C22×D5).5(C2×C6) = C3×D10⋊D4φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).5(C2xC6)480,677
(C22×D5).6(C2×C6) = C3×Dic5.5D4φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).6(C2xC6)480,678
(C22×D5).7(C2×C6) = C3×C22.D20φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).7(C2xC6)480,679
(C22×D5).8(C2×C6) = C3×D10.13D4φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).8(C2xC6)480,687
(C22×D5).9(C2×C6) = C3×C4⋊D20φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).9(C2xC6)480,688
(C22×D5).10(C2×C6) = C3×C4⋊C4⋊D5φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).10(C2xC6)480,691
(C22×D5).11(C2×C6) = C3×C23.23D10φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).11(C2xC6)480,722
(C22×D5).12(C2×C6) = C3×C207D4φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).12(C2xC6)480,723
(C22×D5).13(C2×C6) = C3×Dic5⋊D4φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).13(C2xC6)480,732
(C22×D5).14(C2×C6) = C3×C20⋊D4φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).14(C2xC6)480,733
(C22×D5).15(C2×C6) = C3×C20.23D4φ: C2×C6/C3C22 ⊆ Out C22×D5240(C2^2xD5).15(C2xC6)480,740
(C22×D5).16(C2×C6) = C3×D10.D4φ: C2×C6/C3C22 ⊆ Out C22×D51204(C2^2xD5).16(C2xC6)480,279
(C22×D5).17(C2×C6) = C3×C23⋊F5φ: C2×C6/C3C22 ⊆ Out C22×D51204(C2^2xD5).17(C2xC6)480,291
(C22×D5).18(C2×C6) = C3×D4×F5φ: C2×C6/C3C22 ⊆ Out C22×D5608(C2^2xD5).18(C2xC6)480,1054
(C22×D5).19(C2×C6) = C3×C42⋊D5φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).19(C2xC6)480,665
(C22×D5).20(C2×C6) = C12×D20φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).20(C2xC6)480,666
(C22×D5).21(C2×C6) = C3×D5×C22⋊C4φ: C2×C6/C6C2 ⊆ Out C22×D5120(C2^2xD5).21(C2xC6)480,673
(C22×D5).22(C2×C6) = C3×Dic54D4φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).22(C2xC6)480,674
(C22×D5).23(C2×C6) = C3×D10.12D4φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).23(C2xC6)480,676
(C22×D5).24(C2×C6) = C3×C4⋊C47D5φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).24(C2xC6)480,685
(C22×D5).25(C2×C6) = C3×D208C4φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).25(C2xC6)480,686
(C22×D5).26(C2×C6) = C3×D10⋊Q8φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).26(C2xC6)480,689
(C22×D5).27(C2×C6) = C3×D102Q8φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).27(C2xC6)480,690
(C22×D5).28(C2×C6) = C6×D10⋊C4φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).28(C2xC6)480,720
(C22×D5).29(C2×C6) = C12×C5⋊D4φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).29(C2xC6)480,721
(C22×D5).30(C2×C6) = C3×C23⋊D10φ: C2×C6/C6C2 ⊆ Out C22×D5120(C2^2xD5).30(C2xC6)480,730
(C22×D5).31(C2×C6) = C3×C202D4φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).31(C2xC6)480,731
(C22×D5).32(C2×C6) = C3×D103Q8φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).32(C2xC6)480,739
(C22×D5).33(C2×C6) = C6×C4○D20φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).33(C2xC6)480,1138
(C22×D5).34(C2×C6) = C6×D42D5φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).34(C2xC6)480,1140
(C22×D5).35(C2×C6) = C6×Q82D5φ: C2×C6/C6C2 ⊆ Out C22×D5240(C2^2xD5).35(C2xC6)480,1143
(C22×D5).36(C2×C6) = C3×D5×C4○D4φ: C2×C6/C6C2 ⊆ Out C22×D51204(C2^2xD5).36(C2xC6)480,1145
(C22×D5).37(C2×C6) = C3×D10.3Q8φ: C2×C6/C6C2 ⊆ Out C22×D5120(C2^2xD5).37(C2xC6)480,286
(C22×D5).38(C2×C6) = F5×C2×C12φ: C2×C6/C6C2 ⊆ Out C22×D5120(C2^2xD5).38(C2xC6)480,1050
(C22×D5).39(C2×C6) = C6×C4⋊F5φ: C2×C6/C6C2 ⊆ Out C22×D5120(C2^2xD5).39(C2xC6)480,1051
(C22×D5).40(C2×C6) = C3×D10.C23φ: C2×C6/C6C2 ⊆ Out C22×D51204(C2^2xD5).40(C2xC6)480,1052
(C22×D5).41(C2×C6) = C6×C22⋊F5φ: C2×C6/C6C2 ⊆ Out C22×D5120(C2^2xD5).41(C2xC6)480,1059
(C22×D5).42(C2×C6) = F5×C22×C6φ: C2×C6/C6C2 ⊆ Out C22×D5120(C2^2xD5).42(C2xC6)480,1205
(C22×D5).43(C2×C6) = D5×C4×C12φ: trivial image240(C2^2xD5).43(C2xC6)480,664
(C22×D5).44(C2×C6) = C3×D5×C4⋊C4φ: trivial image240(C2^2xD5).44(C2xC6)480,684
(C22×D5).45(C2×C6) = D5×C22×C12φ: trivial image240(C2^2xD5).45(C2xC6)480,1136
(C22×D5).46(C2×C6) = C6×Q8×D5φ: trivial image240(C2^2xD5).46(C2xC6)480,1142

׿
×
𝔽