Copied to
clipboard

## G = C3×D5×C4○D4order 480 = 25·3·5

### Direct product of C3, D5 and C4○D4

Series: Derived Chief Lower central Upper central

 Derived series C1 — C10 — C3×D5×C4○D4
 Chief series C1 — C5 — C10 — C30 — C6×D5 — D5×C2×C6 — D5×C2×C12 — C3×D5×C4○D4
 Lower central C5 — C10 — C3×D5×C4○D4
 Upper central C1 — C12 — C3×C4○D4

Generators and relations for C3×D5×C4○D4
G = < a,b,c,d,e,f | a3=b5=c2=d4=f2=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=d2e >

Subgroups: 944 in 328 conjugacy classes, 174 normal (32 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C5, C6, C6, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C12, C12, C12, C2×C6, C2×C6, C15, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, Dic5, Dic5, C20, C20, D10, D10, D10, C2×C10, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C3×D5, C3×D5, C30, C30, C2×C4○D4, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C5×Q8, C22×D5, C22×C12, C6×D4, C6×Q8, C3×C4○D4, C3×C4○D4, C3×Dic5, C3×Dic5, C60, C60, C6×D5, C6×D5, C6×D5, C2×C30, C2×C4×D5, C4○D20, D4×D5, D42D5, Q8×D5, Q82D5, C5×C4○D4, C6×C4○D4, C3×Dic10, D5×C12, D5×C12, C3×D20, C6×Dic5, C3×C5⋊D4, C2×C60, D4×C15, Q8×C15, D5×C2×C6, D5×C4○D4, D5×C2×C12, C3×C4○D20, C3×D4×D5, C3×D42D5, C3×Q8×D5, C3×Q82D5, C15×C4○D4, C3×D5×C4○D4
Quotients: C1, C2, C3, C22, C6, C23, D5, C2×C6, C4○D4, C24, D10, C22×C6, C3×D5, C2×C4○D4, C22×D5, C3×C4○D4, C23×C6, C6×D5, C23×D5, C6×C4○D4, D5×C2×C6, D5×C4○D4, D5×C22×C6, C3×D5×C4○D4

Smallest permutation representation of C3×D5×C4○D4
On 120 points
Generators in S120
(1 24 14)(2 25 15)(3 21 11)(4 22 12)(5 23 13)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)(61 81 71)(62 82 72)(63 83 73)(64 84 74)(65 85 75)(66 86 76)(67 87 77)(68 88 78)(69 89 79)(70 90 80)(91 111 101)(92 112 102)(93 113 103)(94 114 104)(95 115 105)(96 116 106)(97 117 107)(98 118 108)(99 119 109)(100 120 110)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(42 45)(43 44)(47 50)(48 49)(52 55)(53 54)(57 60)(58 59)(62 65)(63 64)(67 70)(68 69)(72 75)(73 74)(77 80)(78 79)(82 85)(83 84)(87 90)(88 89)(92 95)(93 94)(97 100)(98 99)(102 105)(103 104)(107 110)(108 109)(112 115)(113 114)(117 120)(118 119)
(1 39 9 34)(2 40 10 35)(3 36 6 31)(4 37 7 32)(5 38 8 33)(11 46 16 41)(12 47 17 42)(13 48 18 43)(14 49 19 44)(15 50 20 45)(21 56 26 51)(22 57 27 52)(23 58 28 53)(24 59 29 54)(25 60 30 55)(61 96 66 91)(62 97 67 92)(63 98 68 93)(64 99 69 94)(65 100 70 95)(71 106 76 101)(72 107 77 102)(73 108 78 103)(74 109 79 104)(75 110 80 105)(81 116 86 111)(82 117 87 112)(83 118 88 113)(84 119 89 114)(85 120 90 115)
(1 64 9 69)(2 65 10 70)(3 61 6 66)(4 62 7 67)(5 63 8 68)(11 71 16 76)(12 72 17 77)(13 73 18 78)(14 74 19 79)(15 75 20 80)(21 81 26 86)(22 82 27 87)(23 83 28 88)(24 84 29 89)(25 85 30 90)(31 91 36 96)(32 92 37 97)(33 93 38 98)(34 94 39 99)(35 95 40 100)(41 101 46 106)(42 102 47 107)(43 103 48 108)(44 104 49 109)(45 105 50 110)(51 111 56 116)(52 112 57 117)(53 113 58 118)(54 114 59 119)(55 115 60 120)
(61 66)(62 67)(63 68)(64 69)(65 70)(71 76)(72 77)(73 78)(74 79)(75 80)(81 86)(82 87)(83 88)(84 89)(85 90)(91 96)(92 97)(93 98)(94 99)(95 100)(101 106)(102 107)(103 108)(104 109)(105 110)(111 116)(112 117)(113 118)(114 119)(115 120)

G:=sub<Sym(120)| (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119), (1,39,9,34)(2,40,10,35)(3,36,6,31)(4,37,7,32)(5,38,8,33)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,56,26,51)(22,57,27,52)(23,58,28,53)(24,59,29,54)(25,60,30,55)(61,96,66,91)(62,97,67,92)(63,98,68,93)(64,99,69,94)(65,100,70,95)(71,106,76,101)(72,107,77,102)(73,108,78,103)(74,109,79,104)(75,110,80,105)(81,116,86,111)(82,117,87,112)(83,118,88,113)(84,119,89,114)(85,120,90,115), (1,64,9,69)(2,65,10,70)(3,61,6,66)(4,62,7,67)(5,63,8,68)(11,71,16,76)(12,72,17,77)(13,73,18,78)(14,74,19,79)(15,75,20,80)(21,81,26,86)(22,82,27,87)(23,83,28,88)(24,84,29,89)(25,85,30,90)(31,91,36,96)(32,92,37,97)(33,93,38,98)(34,94,39,99)(35,95,40,100)(41,101,46,106)(42,102,47,107)(43,103,48,108)(44,104,49,109)(45,105,50,110)(51,111,56,116)(52,112,57,117)(53,113,58,118)(54,114,59,119)(55,115,60,120), (61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120)>;

G:=Group( (1,24,14)(2,25,15)(3,21,11)(4,22,12)(5,23,13)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,111,101)(92,112,102)(93,113,103)(94,114,104)(95,115,105)(96,116,106)(97,117,107)(98,118,108)(99,119,109)(100,120,110), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119), (1,39,9,34)(2,40,10,35)(3,36,6,31)(4,37,7,32)(5,38,8,33)(11,46,16,41)(12,47,17,42)(13,48,18,43)(14,49,19,44)(15,50,20,45)(21,56,26,51)(22,57,27,52)(23,58,28,53)(24,59,29,54)(25,60,30,55)(61,96,66,91)(62,97,67,92)(63,98,68,93)(64,99,69,94)(65,100,70,95)(71,106,76,101)(72,107,77,102)(73,108,78,103)(74,109,79,104)(75,110,80,105)(81,116,86,111)(82,117,87,112)(83,118,88,113)(84,119,89,114)(85,120,90,115), (1,64,9,69)(2,65,10,70)(3,61,6,66)(4,62,7,67)(5,63,8,68)(11,71,16,76)(12,72,17,77)(13,73,18,78)(14,74,19,79)(15,75,20,80)(21,81,26,86)(22,82,27,87)(23,83,28,88)(24,84,29,89)(25,85,30,90)(31,91,36,96)(32,92,37,97)(33,93,38,98)(34,94,39,99)(35,95,40,100)(41,101,46,106)(42,102,47,107)(43,103,48,108)(44,104,49,109)(45,105,50,110)(51,111,56,116)(52,112,57,117)(53,113,58,118)(54,114,59,119)(55,115,60,120), (61,66)(62,67)(63,68)(64,69)(65,70)(71,76)(72,77)(73,78)(74,79)(75,80)(81,86)(82,87)(83,88)(84,89)(85,90)(91,96)(92,97)(93,98)(94,99)(95,100)(101,106)(102,107)(103,108)(104,109)(105,110)(111,116)(112,117)(113,118)(114,119)(115,120) );

G=PermutationGroup([[(1,24,14),(2,25,15),(3,21,11),(4,22,12),(5,23,13),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50),(61,81,71),(62,82,72),(63,83,73),(64,84,74),(65,85,75),(66,86,76),(67,87,77),(68,88,78),(69,89,79),(70,90,80),(91,111,101),(92,112,102),(93,113,103),(94,114,104),(95,115,105),(96,116,106),(97,117,107),(98,118,108),(99,119,109),(100,120,110)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(42,45),(43,44),(47,50),(48,49),(52,55),(53,54),(57,60),(58,59),(62,65),(63,64),(67,70),(68,69),(72,75),(73,74),(77,80),(78,79),(82,85),(83,84),(87,90),(88,89),(92,95),(93,94),(97,100),(98,99),(102,105),(103,104),(107,110),(108,109),(112,115),(113,114),(117,120),(118,119)], [(1,39,9,34),(2,40,10,35),(3,36,6,31),(4,37,7,32),(5,38,8,33),(11,46,16,41),(12,47,17,42),(13,48,18,43),(14,49,19,44),(15,50,20,45),(21,56,26,51),(22,57,27,52),(23,58,28,53),(24,59,29,54),(25,60,30,55),(61,96,66,91),(62,97,67,92),(63,98,68,93),(64,99,69,94),(65,100,70,95),(71,106,76,101),(72,107,77,102),(73,108,78,103),(74,109,79,104),(75,110,80,105),(81,116,86,111),(82,117,87,112),(83,118,88,113),(84,119,89,114),(85,120,90,115)], [(1,64,9,69),(2,65,10,70),(3,61,6,66),(4,62,7,67),(5,63,8,68),(11,71,16,76),(12,72,17,77),(13,73,18,78),(14,74,19,79),(15,75,20,80),(21,81,26,86),(22,82,27,87),(23,83,28,88),(24,84,29,89),(25,85,30,90),(31,91,36,96),(32,92,37,97),(33,93,38,98),(34,94,39,99),(35,95,40,100),(41,101,46,106),(42,102,47,107),(43,103,48,108),(44,104,49,109),(45,105,50,110),(51,111,56,116),(52,112,57,117),(53,113,58,118),(54,114,59,119),(55,115,60,120)], [(61,66),(62,67),(63,68),(64,69),(65,70),(71,76),(72,77),(73,78),(74,79),(75,80),(81,86),(82,87),(83,88),(84,89),(85,90),(91,96),(92,97),(93,98),(94,99),(95,100),(101,106),(102,107),(103,108),(104,109),(105,110),(111,116),(112,117),(113,118),(114,119),(115,120)]])

120 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 2H 2I 3A 3B 4A 4B 4C 4D 4E 4F 4G 4H 4I 4J 5A 5B 6A 6B 6C ··· 6H 6I 6J 6K 6L 6M ··· 6R 10A 10B 10C ··· 10H 12A 12B 12C 12D 12E ··· 12J 12K 12L 12M 12N 12O ··· 12T 15A 15B 15C 15D 20A 20B 20C 20D 20E ··· 20J 30A 30B 30C 30D 30E ··· 30P 60A ··· 60H 60I ··· 60T order 1 2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 ··· 6 6 6 6 6 6 ··· 6 10 10 10 ··· 10 12 12 12 12 12 ··· 12 12 12 12 12 12 ··· 12 15 15 15 15 20 20 20 20 20 ··· 20 30 30 30 30 30 ··· 30 60 ··· 60 60 ··· 60 size 1 1 2 2 2 5 5 10 10 10 1 1 1 1 2 2 2 5 5 10 10 10 2 2 1 1 2 ··· 2 5 5 5 5 10 ··· 10 2 2 4 ··· 4 1 1 1 1 2 ··· 2 5 5 5 5 10 ··· 10 2 2 2 2 2 2 2 2 4 ··· 4 2 2 2 2 4 ··· 4 2 ··· 2 4 ··· 4

120 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 4 4 type + + + + + + + + + + + + image C1 C2 C2 C2 C2 C2 C2 C2 C3 C6 C6 C6 C6 C6 C6 C6 D5 C4○D4 D10 D10 D10 C3×D5 C3×C4○D4 C6×D5 C6×D5 C6×D5 D5×C4○D4 C3×D5×C4○D4 kernel C3×D5×C4○D4 D5×C2×C12 C3×C4○D20 C3×D4×D5 C3×D4⋊2D5 C3×Q8×D5 C3×Q8⋊2D5 C15×C4○D4 D5×C4○D4 C2×C4×D5 C4○D20 D4×D5 D4⋊2D5 Q8×D5 Q8⋊2D5 C5×C4○D4 C3×C4○D4 C3×D5 C2×C12 C3×D4 C3×Q8 C4○D4 D5 C2×C4 D4 Q8 C3 C1 # reps 1 3 3 3 3 1 1 1 2 6 6 6 6 2 2 2 2 4 6 6 2 4 8 12 12 4 4 8

Matrix representation of C3×D5×C4○D4 in GL4(𝔽61) generated by

 1 0 0 0 0 1 0 0 0 0 47 0 0 0 0 47
,
 0 1 0 0 60 43 0 0 0 0 1 0 0 0 0 1
,
 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
,
 1 0 0 0 0 1 0 0 0 0 50 0 0 0 0 50
,
 1 0 0 0 0 1 0 0 0 0 8 2 0 0 59 53
,
 1 0 0 0 0 1 0 0 0 0 1 0 0 0 53 60
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,47,0,0,0,0,47],[0,60,0,0,1,43,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,50,0,0,0,0,50],[1,0,0,0,0,1,0,0,0,0,8,59,0,0,2,53],[1,0,0,0,0,1,0,0,0,0,1,53,0,0,0,60] >;

C3×D5×C4○D4 in GAP, Magma, Sage, TeX

C_3\times D_5\times C_4\circ D_4
% in TeX

G:=Group("C3xD5xC4oD4");
// GroupNames label

G:=SmallGroup(480,1145);
// by ID

G=gap.SmallGroup(480,1145);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-5,268,794,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^5=c^2=d^4=f^2=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=d^2*e>;
// generators/relations

׿
×
𝔽