Extensions 1→N→G→Q→1 with N=D5xC12 and Q=C4

Direct product G=NxQ with N=D5xC12 and Q=C4
dρLabelID
D5xC4xC12240D5xC4xC12480,664

Semidirect products G=N:Q with N=D5xC12 and Q=C4
extensionφ:Q→Out NdρLabelID
(D5xC12):1C4 = (C4xD5):Dic3φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12):1C4480,434
(D5xC12):2C4 = D5xC4:Dic3φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12):2C4480,488
(D5xC12):3C4 = (D5xC12):C4φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12):3C4480,433
(D5xC12):4C4 = C4xD5xDic3φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12):4C4480,467
(D5xC12):5C4 = C3xD5xC4:C4φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12):5C4480,684
(D5xC12):6C4 = C3xC4:C4:7D5φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12):6C4480,685
(D5xC12):7C4 = C2xC60:C4φ: C4/C2C2 ⊆ Out D5xC12120(D5xC12):7C4480,1064
(D5xC12):8C4 = C3xC42:D5φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12):8C4480,665
(D5xC12):9C4 = C2xC4xC3:F5φ: C4/C2C2 ⊆ Out D5xC12120(D5xC12):9C4480,1063
(D5xC12):10C4 = (C2xC12):6F5φ: C4/C2C2 ⊆ Out D5xC121204(D5xC12):10C4480,1065
(D5xC12):11C4 = C6xC4:F5φ: C4/C2C2 ⊆ Out D5xC12120(D5xC12):11C4480,1051
(D5xC12):12C4 = C3xD10.C23φ: C4/C2C2 ⊆ Out D5xC121204(D5xC12):12C4480,1052
(D5xC12):13C4 = F5xC2xC12φ: C4/C2C2 ⊆ Out D5xC12120(D5xC12):13C4480,1050

Non-split extensions G=N.Q with N=D5xC12 and Q=C4
extensionφ:Q→Out NdρLabelID
(D5xC12).1C4 = D5xC4.Dic3φ: C4/C2C2 ⊆ Out D5xC121204(D5xC12).1C4480,358
(D5xC12).2C4 = D5xC3:C16φ: C4/C2C2 ⊆ Out D5xC122404(D5xC12).2C4480,7
(D5xC12).3C4 = C40.51D6φ: C4/C2C2 ⊆ Out D5xC122404(D5xC12).3C4480,10
(D5xC12).4C4 = C2xD5xC3:C8φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12).4C4480,357
(D5xC12).5C4 = C2xC20.32D6φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12).5C4480,369
(D5xC12).6C4 = C3xD5xM4(2)φ: C4/C2C2 ⊆ Out D5xC121204(D5xC12).6C4480,699
(D5xC12).7C4 = C2xC12.F5φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12).7C4480,1061
(D5xC12).8C4 = C3xC80:C2φ: C4/C2C2 ⊆ Out D5xC122402(D5xC12).8C4480,76
(D5xC12).9C4 = C6xC8:D5φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12).9C4480,693
(D5xC12).10C4 = C24.F5φ: C4/C2C2 ⊆ Out D5xC122404(D5xC12).10C4480,294
(D5xC12).11C4 = C120.C4φ: C4/C2C2 ⊆ Out D5xC122404(D5xC12).11C4480,295
(D5xC12).12C4 = C2xC60.C4φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12).12C4480,1060
(D5xC12).13C4 = C60.59(C2xC4)φ: C4/C2C2 ⊆ Out D5xC121204(D5xC12).13C4480,1062
(D5xC12).14C4 = C6xC4.F5φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12).14C4480,1048
(D5xC12).15C4 = C3xD5:M4(2)φ: C4/C2C2 ⊆ Out D5xC121204(D5xC12).15C4480,1049
(D5xC12).16C4 = C3xD5:C16φ: C4/C2C2 ⊆ Out D5xC122404(D5xC12).16C4480,269
(D5xC12).17C4 = C3xC8.F5φ: C4/C2C2 ⊆ Out D5xC122404(D5xC12).17C4480,270
(D5xC12).18C4 = C6xD5:C8φ: C4/C2C2 ⊆ Out D5xC12240(D5xC12).18C4480,1047
(D5xC12).19C4 = D5xC48φ: trivial image2402(D5xC12).19C4480,75
(D5xC12).20C4 = D5xC2xC24φ: trivial image240(D5xC12).20C4480,692

׿
x
:
Z
F
o
wr
Q
<