Extensions 1→N→G→Q→1 with N=C5×M4(2) and Q=S3

Direct product G=N×Q with N=C5×M4(2) and Q=S3
dρLabelID
C5×S3×M4(2)1204C5xS3xM4(2)480,785

Semidirect products G=N:Q with N=C5×M4(2) and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×M4(2))⋊1S3 = C8⋊D30φ: S3/C3C2 ⊆ Out C5×M4(2)1204+(C5xM4(2)):1S3480,873
(C5×M4(2))⋊2S3 = C8.D30φ: S3/C3C2 ⊆ Out C5×M4(2)2404-(C5xM4(2)):2S3480,874
(C5×M4(2))⋊3S3 = M4(2)×D15φ: S3/C3C2 ⊆ Out C5×M4(2)1204(C5xM4(2)):3S3480,871
(C5×M4(2))⋊4S3 = D60.3C4φ: S3/C3C2 ⊆ Out C5×M4(2)2404(C5xM4(2)):4S3480,872
(C5×M4(2))⋊5S3 = C5×C8⋊D6φ: S3/C3C2 ⊆ Out C5×M4(2)1204(C5xM4(2)):5S3480,787
(C5×M4(2))⋊6S3 = C5×C8.D6φ: S3/C3C2 ⊆ Out C5×M4(2)2404(C5xM4(2)):6S3480,788
(C5×M4(2))⋊7S3 = C5×C12.46D4φ: S3/C3C2 ⊆ Out C5×M4(2)1204(C5xM4(2)):7S3480,142
(C5×M4(2))⋊8S3 = C5×D12⋊C4φ: S3/C3C2 ⊆ Out C5×M4(2)1204(C5xM4(2)):8S3480,144
(C5×M4(2))⋊9S3 = M4(2)⋊D15φ: S3/C3C2 ⊆ Out C5×M4(2)1204+(C5xM4(2)):9S3480,183
(C5×M4(2))⋊10S3 = D6010C4φ: S3/C3C2 ⊆ Out C5×M4(2)1204(C5xM4(2)):10S3480,185
(C5×M4(2))⋊11S3 = C5×D12.C4φ: trivial image2404(C5xM4(2)):11S3480,786

Non-split extensions G=N.Q with N=C5×M4(2) and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×M4(2)).1S3 = C5×C12.53D4φ: S3/C3C2 ⊆ Out C5×M4(2)2404(C5xM4(2)).1S3480,141
(C5×M4(2)).2S3 = C5×C12.47D4φ: S3/C3C2 ⊆ Out C5×M4(2)2404(C5xM4(2)).2S3480,143
(C5×M4(2)).3S3 = C60.210D4φ: S3/C3C2 ⊆ Out C5×M4(2)2404(C5xM4(2)).3S3480,182
(C5×M4(2)).4S3 = C4.D60φ: S3/C3C2 ⊆ Out C5×M4(2)2404-(C5xM4(2)).4S3480,184

׿
×
𝔽